File size: 2,644 Bytes
164ef5b
 
205ce8e
164ef5b
 
883dfef
 
164ef5b
 
a5881c9
 
 
164ef5b
 
883dfef
 
 
 
 
 
 
 
ed57e1a
883dfef
 
 
 
ed57e1a
a5881c9
 
ed57e1a
a5881c9
 
ed57e1a
a5881c9
 
 
164ef5b
 
 
 
 
 
 
205ce8e
164ef5b
ed57e1a
 
 
 
a5881c9
ed57e1a
164ef5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5881c9
ed57e1a
 
164ef5b
205ce8e
ed57e1a
164ef5b
 
205ce8e
 
164ef5b
 
 
a5881c9
 
ed57e1a
 
 
 
 
164ef5b
 
 
 
 
883dfef
164ef5b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
---
license: apache-2.0
base_model: microsoft/swin-base-patch4-window7-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: swin-finetuned-food101
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: validation
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.4166666666666667
    - name: F1
      type: f1
      value: 0.5882352941176471
    - name: Precision
      type: precision
      value: 0.4166666666666667
    - name: Recall
      type: recall
      value: 1.0
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# swin-finetuned-food101

This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224](https://huggingface.co./microsoft/swin-base-patch4-window7-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7046
- Accuracy: 0.4167
- F1: 0.5882
- Precision: 0.4167
- Recall: 1.0
- Auc: 0.5742

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.06
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     | Precision | Recall | Auc    |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:------:|
| 0.6978        | 1.0   | 14   | 0.6847          | 0.5833   | 0.0    | 0.0       | 0.0    | 0.5717 |
| 0.7025        | 2.0   | 28   | 0.7120          | 0.4167   | 0.5882 | 0.4167    | 1.0    | 0.5570 |
| 0.6946        | 3.0   | 42   | 0.6955          | 0.4167   | 0.5882 | 0.4167    | 1.0    | 0.5662 |
| 0.6935        | 4.0   | 56   | 0.7047          | 0.4167   | 0.5882 | 0.4167    | 1.0    | 0.5644 |
| 0.6935        | 5.0   | 70   | 0.7046          | 0.4167   | 0.5882 | 0.4167    | 1.0    | 0.5742 |


### Framework versions

- Transformers 4.36.2
- Pytorch 2.1.2+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0