Model save
Browse files- README.md +17 -17
- model.safetensors +1 -1
README.md
CHANGED
@@ -20,18 +20,18 @@ model-index:
|
|
20 |
name: imagefolder
|
21 |
type: imagefolder
|
22 |
config: default
|
23 |
-
split:
|
24 |
args: default
|
25 |
metrics:
|
26 |
- name: Accuracy
|
27 |
type: accuracy
|
28 |
-
value: 0.
|
29 |
- name: F1
|
30 |
type: f1
|
31 |
-
value: 0.
|
32 |
- name: Precision
|
33 |
type: precision
|
34 |
-
value: 0.
|
35 |
- name: Recall
|
36 |
type: recall
|
37 |
value: 1.0
|
@@ -44,12 +44,12 @@ should probably proofread and complete it, then remove this comment. -->
|
|
44 |
|
45 |
This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224](https://huggingface.co/microsoft/swin-base-patch4-window7-224) on the imagefolder dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
-
- Loss: 0.
|
48 |
-
- Accuracy: 0.
|
49 |
-
- F1: 0.
|
50 |
-
- Precision: 0.
|
51 |
- Recall: 1.0
|
52 |
-
- Auc: 0.
|
53 |
|
54 |
## Model description
|
55 |
|
@@ -69,11 +69,11 @@ More information needed
|
|
69 |
|
70 |
The following hyperparameters were used during training:
|
71 |
- learning_rate: 0.001
|
72 |
-
- train_batch_size:
|
73 |
-
- eval_batch_size:
|
74 |
- seed: 42
|
75 |
- gradient_accumulation_steps: 2
|
76 |
-
- total_train_batch_size:
|
77 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
78 |
- lr_scheduler_type: linear
|
79 |
- lr_scheduler_warmup_ratio: 0.06
|
@@ -83,11 +83,11 @@ The following hyperparameters were used during training:
|
|
83 |
|
84 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Auc |
|
85 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:------:|
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
|
92 |
|
93 |
### Framework versions
|
|
|
20 |
name: imagefolder
|
21 |
type: imagefolder
|
22 |
config: default
|
23 |
+
split: validation
|
24 |
args: default
|
25 |
metrics:
|
26 |
- name: Accuracy
|
27 |
type: accuracy
|
28 |
+
value: 0.4166666666666667
|
29 |
- name: F1
|
30 |
type: f1
|
31 |
+
value: 0.5882352941176471
|
32 |
- name: Precision
|
33 |
type: precision
|
34 |
+
value: 0.4166666666666667
|
35 |
- name: Recall
|
36 |
type: recall
|
37 |
value: 1.0
|
|
|
44 |
|
45 |
This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224](https://huggingface.co/microsoft/swin-base-patch4-window7-224) on the imagefolder dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: 0.7046
|
48 |
+
- Accuracy: 0.4167
|
49 |
+
- F1: 0.5882
|
50 |
+
- Precision: 0.4167
|
51 |
- Recall: 1.0
|
52 |
+
- Auc: 0.5742
|
53 |
|
54 |
## Model description
|
55 |
|
|
|
69 |
|
70 |
The following hyperparameters were used during training:
|
71 |
- learning_rate: 0.001
|
72 |
+
- train_batch_size: 32
|
73 |
+
- eval_batch_size: 32
|
74 |
- seed: 42
|
75 |
- gradient_accumulation_steps: 2
|
76 |
+
- total_train_batch_size: 64
|
77 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
78 |
- lr_scheduler_type: linear
|
79 |
- lr_scheduler_warmup_ratio: 0.06
|
|
|
83 |
|
84 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Auc |
|
85 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:------:|
|
86 |
+
| 0.6978 | 1.0 | 14 | 0.6847 | 0.5833 | 0.0 | 0.0 | 0.0 | 0.5717 |
|
87 |
+
| 0.7025 | 2.0 | 28 | 0.7120 | 0.4167 | 0.5882 | 0.4167 | 1.0 | 0.5570 |
|
88 |
+
| 0.6946 | 3.0 | 42 | 0.6955 | 0.4167 | 0.5882 | 0.4167 | 1.0 | 0.5662 |
|
89 |
+
| 0.6935 | 4.0 | 56 | 0.7047 | 0.4167 | 0.5882 | 0.4167 | 1.0 | 0.5644 |
|
90 |
+
| 0.6935 | 5.0 | 70 | 0.7046 | 0.4167 | 0.5882 | 0.4167 | 1.0 | 0.5742 |
|
91 |
|
92 |
|
93 |
### Framework versions
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 347498816
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:37cf9640c6f10cc7e911b6dfbe151b70bba5d384259443373156e6ffed08b0f6
|
3 |
size 347498816
|