Saco93's picture
Upload README.md with huggingface_hub
b1ad4e4 verified
metadata
tags:
  - mteb
  - llama-cpp
  - gguf-my-repo
license: cc-by-nc-4.0
library_name: sentence-transformers
base_model: TencentBAC/Conan-embedding-v1
model-index:
  - name: conan-embedding
    results:
      - task:
          type: STS
        dataset:
          name: MTEB AFQMC
          type: C-MTEB/AFQMC
          config: default
          split: validation
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 56.613572467148856
          - type: cos_sim_spearman
            value: 60.66446211824284
          - type: euclidean_pearson
            value: 58.42080485872613
          - type: euclidean_spearman
            value: 59.82750030458164
          - type: manhattan_pearson
            value: 58.39885271199772
          - type: manhattan_spearman
            value: 59.817749720366734
      - task:
          type: STS
        dataset:
          name: MTEB ATEC
          type: C-MTEB/ATEC
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 56.60530380552331
          - type: cos_sim_spearman
            value: 58.63822441736707
          - type: euclidean_pearson
            value: 62.18551665180664
          - type: euclidean_spearman
            value: 58.23168804495912
          - type: manhattan_pearson
            value: 62.17191480770053
          - type: manhattan_spearman
            value: 58.22556219601401
      - task:
          type: Classification
        dataset:
          name: MTEB AmazonReviewsClassification (zh)
          type: mteb/amazon_reviews_multi
          config: zh
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 50.308
          - type: f1
            value: 46.927458607895126
      - task:
          type: STS
        dataset:
          name: MTEB BQ
          type: C-MTEB/BQ
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 72.6472074172711
          - type: cos_sim_spearman
            value: 74.50748447236577
          - type: euclidean_pearson
            value: 72.51833296451854
          - type: euclidean_spearman
            value: 73.9898922606105
          - type: manhattan_pearson
            value: 72.50184948939338
          - type: manhattan_spearman
            value: 73.97797921509638
      - task:
          type: Clustering
        dataset:
          name: MTEB CLSClusteringP2P
          type: C-MTEB/CLSClusteringP2P
          config: default
          split: test
          revision: None
        metrics:
          - type: v_measure
            value: 60.63545326048343
      - task:
          type: Clustering
        dataset:
          name: MTEB CLSClusteringS2S
          type: C-MTEB/CLSClusteringS2S
          config: default
          split: test
          revision: None
        metrics:
          - type: v_measure
            value: 52.64834762325994
      - task:
          type: Reranking
        dataset:
          name: MTEB CMedQAv1
          type: C-MTEB/CMedQAv1-reranking
          config: default
          split: test
          revision: None
        metrics:
          - type: map
            value: 91.38528814655234
          - type: mrr
            value: 93.35857142857144
      - task:
          type: Reranking
        dataset:
          name: MTEB CMedQAv2
          type: C-MTEB/CMedQAv2-reranking
          config: default
          split: test
          revision: None
        metrics:
          - type: map
            value: 89.72084678877096
          - type: mrr
            value: 91.74380952380953
      - task:
          type: Retrieval
        dataset:
          name: MTEB CmedqaRetrieval
          type: C-MTEB/CmedqaRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 26.987
          - type: map_at_10
            value: 40.675
          - type: map_at_100
            value: 42.495
          - type: map_at_1000
            value: 42.596000000000004
          - type: map_at_3
            value: 36.195
          - type: map_at_5
            value: 38.704
          - type: mrr_at_1
            value: 41.21
          - type: mrr_at_10
            value: 49.816
          - type: mrr_at_100
            value: 50.743
          - type: mrr_at_1000
            value: 50.77700000000001
          - type: mrr_at_3
            value: 47.312
          - type: mrr_at_5
            value: 48.699999999999996
          - type: ndcg_at_1
            value: 41.21
          - type: ndcg_at_10
            value: 47.606
          - type: ndcg_at_100
            value: 54.457
          - type: ndcg_at_1000
            value: 56.16100000000001
          - type: ndcg_at_3
            value: 42.108000000000004
          - type: ndcg_at_5
            value: 44.393
          - type: precision_at_1
            value: 41.21
          - type: precision_at_10
            value: 10.593
          - type: precision_at_100
            value: 1.609
          - type: precision_at_1000
            value: 0.183
          - type: precision_at_3
            value: 23.881
          - type: precision_at_5
            value: 17.339
          - type: recall_at_1
            value: 26.987
          - type: recall_at_10
            value: 58.875
          - type: recall_at_100
            value: 87.023
          - type: recall_at_1000
            value: 98.328
          - type: recall_at_3
            value: 42.265
          - type: recall_at_5
            value: 49.334
      - task:
          type: PairClassification
        dataset:
          name: MTEB Cmnli
          type: C-MTEB/CMNLI
          config: default
          split: validation
          revision: None
        metrics:
          - type: cos_sim_accuracy
            value: 85.91701743836441
          - type: cos_sim_ap
            value: 92.53650618807644
          - type: cos_sim_f1
            value: 86.80265975431082
          - type: cos_sim_precision
            value: 83.79025239338556
          - type: cos_sim_recall
            value: 90.039747486556
          - type: dot_accuracy
            value: 77.17378232110643
          - type: dot_ap
            value: 85.40244368166546
          - type: dot_f1
            value: 79.03038001481951
          - type: dot_precision
            value: 72.20502901353966
          - type: dot_recall
            value: 87.2808043020809
          - type: euclidean_accuracy
            value: 84.65423932651834
          - type: euclidean_ap
            value: 91.47775530034588
          - type: euclidean_f1
            value: 85.64471499723298
          - type: euclidean_precision
            value: 81.31567885666246
          - type: euclidean_recall
            value: 90.46060322656068
          - type: manhattan_accuracy
            value: 84.58208057726999
          - type: manhattan_ap
            value: 91.46228709402014
          - type: manhattan_f1
            value: 85.6631626034444
          - type: manhattan_precision
            value: 82.10075026795283
          - type: manhattan_recall
            value: 89.5487491232172
          - type: max_accuracy
            value: 85.91701743836441
          - type: max_ap
            value: 92.53650618807644
          - type: max_f1
            value: 86.80265975431082
      - task:
          type: Retrieval
        dataset:
          name: MTEB CovidRetrieval
          type: C-MTEB/CovidRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 83.693
          - type: map_at_10
            value: 90.098
          - type: map_at_100
            value: 90.145
          - type: map_at_1000
            value: 90.146
          - type: map_at_3
            value: 89.445
          - type: map_at_5
            value: 89.935
          - type: mrr_at_1
            value: 83.878
          - type: mrr_at_10
            value: 90.007
          - type: mrr_at_100
            value: 90.045
          - type: mrr_at_1000
            value: 90.046
          - type: mrr_at_3
            value: 89.34
          - type: mrr_at_5
            value: 89.835
          - type: ndcg_at_1
            value: 84.089
          - type: ndcg_at_10
            value: 92.351
          - type: ndcg_at_100
            value: 92.54599999999999
          - type: ndcg_at_1000
            value: 92.561
          - type: ndcg_at_3
            value: 91.15299999999999
          - type: ndcg_at_5
            value: 91.968
          - type: precision_at_1
            value: 84.089
          - type: precision_at_10
            value: 10.011000000000001
          - type: precision_at_100
            value: 1.009
          - type: precision_at_1000
            value: 0.101
          - type: precision_at_3
            value: 32.28
          - type: precision_at_5
            value: 19.789
          - type: recall_at_1
            value: 83.693
          - type: recall_at_10
            value: 99.05199999999999
          - type: recall_at_100
            value: 99.895
          - type: recall_at_1000
            value: 100
          - type: recall_at_3
            value: 95.917
          - type: recall_at_5
            value: 97.893
      - task:
          type: Retrieval
        dataset:
          name: MTEB DuRetrieval
          type: C-MTEB/DuRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 26.924
          - type: map_at_10
            value: 81.392
          - type: map_at_100
            value: 84.209
          - type: map_at_1000
            value: 84.237
          - type: map_at_3
            value: 56.998000000000005
          - type: map_at_5
            value: 71.40100000000001
          - type: mrr_at_1
            value: 91.75
          - type: mrr_at_10
            value: 94.45
          - type: mrr_at_100
            value: 94.503
          - type: mrr_at_1000
            value: 94.505
          - type: mrr_at_3
            value: 94.258
          - type: mrr_at_5
            value: 94.381
          - type: ndcg_at_1
            value: 91.75
          - type: ndcg_at_10
            value: 88.53
          - type: ndcg_at_100
            value: 91.13900000000001
          - type: ndcg_at_1000
            value: 91.387
          - type: ndcg_at_3
            value: 87.925
          - type: ndcg_at_5
            value: 86.461
          - type: precision_at_1
            value: 91.75
          - type: precision_at_10
            value: 42.05
          - type: precision_at_100
            value: 4.827
          - type: precision_at_1000
            value: 0.48900000000000005
          - type: precision_at_3
            value: 78.55
          - type: precision_at_5
            value: 65.82000000000001
          - type: recall_at_1
            value: 26.924
          - type: recall_at_10
            value: 89.338
          - type: recall_at_100
            value: 97.856
          - type: recall_at_1000
            value: 99.11
          - type: recall_at_3
            value: 59.202999999999996
          - type: recall_at_5
            value: 75.642
      - task:
          type: Retrieval
        dataset:
          name: MTEB EcomRetrieval
          type: C-MTEB/EcomRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 54.800000000000004
          - type: map_at_10
            value: 65.613
          - type: map_at_100
            value: 66.185
          - type: map_at_1000
            value: 66.191
          - type: map_at_3
            value: 62.8
          - type: map_at_5
            value: 64.535
          - type: mrr_at_1
            value: 54.800000000000004
          - type: mrr_at_10
            value: 65.613
          - type: mrr_at_100
            value: 66.185
          - type: mrr_at_1000
            value: 66.191
          - type: mrr_at_3
            value: 62.8
          - type: mrr_at_5
            value: 64.535
          - type: ndcg_at_1
            value: 54.800000000000004
          - type: ndcg_at_10
            value: 70.991
          - type: ndcg_at_100
            value: 73.434
          - type: ndcg_at_1000
            value: 73.587
          - type: ndcg_at_3
            value: 65.324
          - type: ndcg_at_5
            value: 68.431
          - type: precision_at_1
            value: 54.800000000000004
          - type: precision_at_10
            value: 8.790000000000001
          - type: precision_at_100
            value: 0.9860000000000001
          - type: precision_at_1000
            value: 0.1
          - type: precision_at_3
            value: 24.2
          - type: precision_at_5
            value: 16.02
          - type: recall_at_1
            value: 54.800000000000004
          - type: recall_at_10
            value: 87.9
          - type: recall_at_100
            value: 98.6
          - type: recall_at_1000
            value: 99.8
          - type: recall_at_3
            value: 72.6
          - type: recall_at_5
            value: 80.10000000000001
      - task:
          type: Classification
        dataset:
          name: MTEB IFlyTek
          type: C-MTEB/IFlyTek-classification
          config: default
          split: validation
          revision: None
        metrics:
          - type: accuracy
            value: 51.94305502116199
          - type: f1
            value: 39.82197338426721
      - task:
          type: Classification
        dataset:
          name: MTEB JDReview
          type: C-MTEB/JDReview-classification
          config: default
          split: test
          revision: None
        metrics:
          - type: accuracy
            value: 90.31894934333957
          - type: ap
            value: 63.89821836499594
          - type: f1
            value: 85.93687177603624
      - task:
          type: STS
        dataset:
          name: MTEB LCQMC
          type: C-MTEB/LCQMC
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 73.18906216730208
          - type: cos_sim_spearman
            value: 79.44570226735877
          - type: euclidean_pearson
            value: 78.8105072242798
          - type: euclidean_spearman
            value: 79.15605680863212
          - type: manhattan_pearson
            value: 78.80576507484064
          - type: manhattan_spearman
            value: 79.14625534068364
      - task:
          type: Reranking
        dataset:
          name: MTEB MMarcoReranking
          type: C-MTEB/Mmarco-reranking
          config: default
          split: dev
          revision: None
        metrics:
          - type: map
            value: 41.58107192600853
          - type: mrr
            value: 41.37063492063492
      - task:
          type: Retrieval
        dataset:
          name: MTEB MMarcoRetrieval
          type: C-MTEB/MMarcoRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 68.33
          - type: map_at_10
            value: 78.261
          - type: map_at_100
            value: 78.522
          - type: map_at_1000
            value: 78.527
          - type: map_at_3
            value: 76.236
          - type: map_at_5
            value: 77.557
          - type: mrr_at_1
            value: 70.602
          - type: mrr_at_10
            value: 78.779
          - type: mrr_at_100
            value: 79.00500000000001
          - type: mrr_at_1000
            value: 79.01
          - type: mrr_at_3
            value: 77.037
          - type: mrr_at_5
            value: 78.157
          - type: ndcg_at_1
            value: 70.602
          - type: ndcg_at_10
            value: 82.254
          - type: ndcg_at_100
            value: 83.319
          - type: ndcg_at_1000
            value: 83.449
          - type: ndcg_at_3
            value: 78.46
          - type: ndcg_at_5
            value: 80.679
          - type: precision_at_1
            value: 70.602
          - type: precision_at_10
            value: 9.989
          - type: precision_at_100
            value: 1.05
          - type: precision_at_1000
            value: 0.106
          - type: precision_at_3
            value: 29.598999999999997
          - type: precision_at_5
            value: 18.948
          - type: recall_at_1
            value: 68.33
          - type: recall_at_10
            value: 94.00800000000001
          - type: recall_at_100
            value: 98.589
          - type: recall_at_1000
            value: 99.60799999999999
          - type: recall_at_3
            value: 84.057
          - type: recall_at_5
            value: 89.32900000000001
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (zh-CN)
          type: mteb/amazon_massive_intent
          config: zh-CN
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 78.13718897108272
          - type: f1
            value: 74.07613180855328
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (zh-CN)
          type: mteb/amazon_massive_scenario
          config: zh-CN
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 86.20040349697376
          - type: f1
            value: 85.05282136519973
      - task:
          type: Retrieval
        dataset:
          name: MTEB MedicalRetrieval
          type: C-MTEB/MedicalRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 56.8
          - type: map_at_10
            value: 64.199
          - type: map_at_100
            value: 64.89
          - type: map_at_1000
            value: 64.917
          - type: map_at_3
            value: 62.383
          - type: map_at_5
            value: 63.378
          - type: mrr_at_1
            value: 56.8
          - type: mrr_at_10
            value: 64.199
          - type: mrr_at_100
            value: 64.89
          - type: mrr_at_1000
            value: 64.917
          - type: mrr_at_3
            value: 62.383
          - type: mrr_at_5
            value: 63.378
          - type: ndcg_at_1
            value: 56.8
          - type: ndcg_at_10
            value: 67.944
          - type: ndcg_at_100
            value: 71.286
          - type: ndcg_at_1000
            value: 71.879
          - type: ndcg_at_3
            value: 64.163
          - type: ndcg_at_5
            value: 65.96600000000001
          - type: precision_at_1
            value: 56.8
          - type: precision_at_10
            value: 7.9799999999999995
          - type: precision_at_100
            value: 0.954
          - type: precision_at_1000
            value: 0.1
          - type: precision_at_3
            value: 23.1
          - type: precision_at_5
            value: 14.74
          - type: recall_at_1
            value: 56.8
          - type: recall_at_10
            value: 79.80000000000001
          - type: recall_at_100
            value: 95.39999999999999
          - type: recall_at_1000
            value: 99.8
          - type: recall_at_3
            value: 69.3
          - type: recall_at_5
            value: 73.7
      - task:
          type: Classification
        dataset:
          name: MTEB MultilingualSentiment
          type: C-MTEB/MultilingualSentiment-classification
          config: default
          split: validation
          revision: None
        metrics:
          - type: accuracy
            value: 78.57666666666667
          - type: f1
            value: 78.23373528202681
      - task:
          type: PairClassification
        dataset:
          name: MTEB Ocnli
          type: C-MTEB/OCNLI
          config: default
          split: validation
          revision: None
        metrics:
          - type: cos_sim_accuracy
            value: 85.43584190579317
          - type: cos_sim_ap
            value: 90.76665640338129
          - type: cos_sim_f1
            value: 86.5021770682148
          - type: cos_sim_precision
            value: 79.82142857142858
          - type: cos_sim_recall
            value: 94.40337909186906
          - type: dot_accuracy
            value: 78.66811044937737
          - type: dot_ap
            value: 85.84084363880804
          - type: dot_f1
            value: 80.10075566750629
          - type: dot_precision
            value: 76.58959537572254
          - type: dot_recall
            value: 83.9493136219641
          - type: euclidean_accuracy
            value: 84.46128857606931
          - type: euclidean_ap
            value: 88.62351100230491
          - type: euclidean_f1
            value: 85.7709469509172
          - type: euclidean_precision
            value: 80.8411214953271
          - type: euclidean_recall
            value: 91.34107708553326
          - type: manhattan_accuracy
            value: 84.51543042772063
          - type: manhattan_ap
            value: 88.53975607870393
          - type: manhattan_f1
            value: 85.75697211155378
          - type: manhattan_precision
            value: 81.14985862393968
          - type: manhattan_recall
            value: 90.91869060190075
          - type: max_accuracy
            value: 85.43584190579317
          - type: max_ap
            value: 90.76665640338129
          - type: max_f1
            value: 86.5021770682148
      - task:
          type: Classification
        dataset:
          name: MTEB OnlineShopping
          type: C-MTEB/OnlineShopping-classification
          config: default
          split: test
          revision: None
        metrics:
          - type: accuracy
            value: 95.06999999999998
          - type: ap
            value: 93.45104559324996
          - type: f1
            value: 95.06036329426092
      - task:
          type: STS
        dataset:
          name: MTEB PAWSX
          type: C-MTEB/PAWSX
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 40.01998290519605
          - type: cos_sim_spearman
            value: 46.5989769986853
          - type: euclidean_pearson
            value: 45.37905883182924
          - type: euclidean_spearman
            value: 46.22213849806378
          - type: manhattan_pearson
            value: 45.40925124776211
          - type: manhattan_spearman
            value: 46.250705124226386
      - task:
          type: STS
        dataset:
          name: MTEB QBQTC
          type: C-MTEB/QBQTC
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 42.719516197112526
          - type: cos_sim_spearman
            value: 44.57507789581106
          - type: euclidean_pearson
            value: 35.73062264160721
          - type: euclidean_spearman
            value: 40.473523909913695
          - type: manhattan_pearson
            value: 35.69868964086357
          - type: manhattan_spearman
            value: 40.46349925372903
      - task:
          type: STS
        dataset:
          name: MTEB STS22 (zh)
          type: mteb/sts22-crosslingual-sts
          config: zh
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 62.340118285801104
          - type: cos_sim_spearman
            value: 67.72781908620632
          - type: euclidean_pearson
            value: 63.161965746091596
          - type: euclidean_spearman
            value: 67.36825684340769
          - type: manhattan_pearson
            value: 63.089863788261425
          - type: manhattan_spearman
            value: 67.40868898995384
      - task:
          type: STS
        dataset:
          name: MTEB STSB
          type: C-MTEB/STSB
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 79.1646360962365
          - type: cos_sim_spearman
            value: 81.24426700767087
          - type: euclidean_pearson
            value: 79.43826409936123
          - type: euclidean_spearman
            value: 79.71787965300125
          - type: manhattan_pearson
            value: 79.43377784961737
          - type: manhattan_spearman
            value: 79.69348376886967
      - task:
          type: Reranking
        dataset:
          name: MTEB T2Reranking
          type: C-MTEB/T2Reranking
          config: default
          split: dev
          revision: None
        metrics:
          - type: map
            value: 68.35595092507496
          - type: mrr
            value: 79.00244892585788
      - task:
          type: Retrieval
        dataset:
          name: MTEB T2Retrieval
          type: C-MTEB/T2Retrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 26.588
          - type: map_at_10
            value: 75.327
          - type: map_at_100
            value: 79.095
          - type: map_at_1000
            value: 79.163
          - type: map_at_3
            value: 52.637
          - type: map_at_5
            value: 64.802
          - type: mrr_at_1
            value: 88.103
          - type: mrr_at_10
            value: 91.29899999999999
          - type: mrr_at_100
            value: 91.408
          - type: mrr_at_1000
            value: 91.411
          - type: mrr_at_3
            value: 90.801
          - type: mrr_at_5
            value: 91.12700000000001
          - type: ndcg_at_1
            value: 88.103
          - type: ndcg_at_10
            value: 83.314
          - type: ndcg_at_100
            value: 87.201
          - type: ndcg_at_1000
            value: 87.83999999999999
          - type: ndcg_at_3
            value: 84.408
          - type: ndcg_at_5
            value: 83.078
          - type: precision_at_1
            value: 88.103
          - type: precision_at_10
            value: 41.638999999999996
          - type: precision_at_100
            value: 5.006
          - type: precision_at_1000
            value: 0.516
          - type: precision_at_3
            value: 73.942
          - type: precision_at_5
            value: 62.056
          - type: recall_at_1
            value: 26.588
          - type: recall_at_10
            value: 82.819
          - type: recall_at_100
            value: 95.334
          - type: recall_at_1000
            value: 98.51299999999999
          - type: recall_at_3
            value: 54.74
          - type: recall_at_5
            value: 68.864
      - task:
          type: Classification
        dataset:
          name: MTEB TNews
          type: C-MTEB/TNews-classification
          config: default
          split: validation
          revision: None
        metrics:
          - type: accuracy
            value: 55.029
          - type: f1
            value: 53.043617905026764
      - task:
          type: Clustering
        dataset:
          name: MTEB ThuNewsClusteringP2P
          type: C-MTEB/ThuNewsClusteringP2P
          config: default
          split: test
          revision: None
        metrics:
          - type: v_measure
            value: 77.83675116835911
      - task:
          type: Clustering
        dataset:
          name: MTEB ThuNewsClusteringS2S
          type: C-MTEB/ThuNewsClusteringS2S
          config: default
          split: test
          revision: None
        metrics:
          - type: v_measure
            value: 74.19701455865277
      - task:
          type: Retrieval
        dataset:
          name: MTEB VideoRetrieval
          type: C-MTEB/VideoRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 64.7
          - type: map_at_10
            value: 75.593
          - type: map_at_100
            value: 75.863
          - type: map_at_1000
            value: 75.863
          - type: map_at_3
            value: 73.63300000000001
          - type: map_at_5
            value: 74.923
          - type: mrr_at_1
            value: 64.7
          - type: mrr_at_10
            value: 75.593
          - type: mrr_at_100
            value: 75.863
          - type: mrr_at_1000
            value: 75.863
          - type: mrr_at_3
            value: 73.63300000000001
          - type: mrr_at_5
            value: 74.923
          - type: ndcg_at_1
            value: 64.7
          - type: ndcg_at_10
            value: 80.399
          - type: ndcg_at_100
            value: 81.517
          - type: ndcg_at_1000
            value: 81.517
          - type: ndcg_at_3
            value: 76.504
          - type: ndcg_at_5
            value: 78.79899999999999
          - type: precision_at_1
            value: 64.7
          - type: precision_at_10
            value: 9.520000000000001
          - type: precision_at_100
            value: 1
          - type: precision_at_1000
            value: 0.1
          - type: precision_at_3
            value: 28.266999999999996
          - type: precision_at_5
            value: 18.060000000000002
          - type: recall_at_1
            value: 64.7
          - type: recall_at_10
            value: 95.19999999999999
          - type: recall_at_100
            value: 100
          - type: recall_at_1000
            value: 100
          - type: recall_at_3
            value: 84.8
          - type: recall_at_5
            value: 90.3
      - task:
          type: Classification
        dataset:
          name: MTEB Waimai
          type: C-MTEB/waimai-classification
          config: default
          split: test
          revision: None
        metrics:
          - type: accuracy
            value: 89.69999999999999
          - type: ap
            value: 75.91371640164184
          - type: f1
            value: 88.34067777698694

Saco93/Conan-embedding-v1-Q4_K_S-GGUF

This model was converted to GGUF format from TencentBAC/Conan-embedding-v1 using llama.cpp via the ggml.ai's GGUF-my-repo space. Refer to the original model card for more details on the model.

Use with llama.cpp

Install llama.cpp through brew (works on Mac and Linux)

brew install llama.cpp

Invoke the llama.cpp server or the CLI.

CLI:

llama-cli --hf-repo Saco93/Conan-embedding-v1-Q4_K_S-GGUF --hf-file conan-embedding-v1-q4_k_s.gguf -p "The meaning to life and the universe is"

Server:

llama-server --hf-repo Saco93/Conan-embedding-v1-Q4_K_S-GGUF --hf-file conan-embedding-v1-q4_k_s.gguf -c 2048

Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.

git clone https://github.com/ggerganov/llama.cpp

Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1 flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).

cd llama.cpp && LLAMA_CURL=1 make

Step 3: Run inference through the main binary.

./llama-cli --hf-repo Saco93/Conan-embedding-v1-Q4_K_S-GGUF --hf-file conan-embedding-v1-q4_k_s.gguf -p "The meaning to life and the universe is"

or

./llama-server --hf-repo Saco93/Conan-embedding-v1-Q4_K_S-GGUF --hf-file conan-embedding-v1-q4_k_s.gguf -c 2048