RubielLabarta's picture
Adding Evaluation Results (#3)
fb0f72b verified
metadata
language:
  - en
  - es
license: apache-2.0
tags:
  - moe
  - merge
base_model:
  - yunconglong/Truthful_DPO_TomGrc_FusionNet_7Bx2_MoE_13B
  - TomGrc/FusionNet_7Bx2_MoE_14B
model-index:
  - name: LogoS-7Bx2-MoE-13B-v0.1
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 74.49
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=RubielLabarta/LogoS-7Bx2-MoE-13B-v0.1
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 89.07
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=RubielLabarta/LogoS-7Bx2-MoE-13B-v0.1
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 64.74
            name: accuracy
        source:
          url: >-
            https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=RubielLabarta/LogoS-7Bx2-MoE-13B-v0.1
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 74.57
        source:
          url: >-
            https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=RubielLabarta/LogoS-7Bx2-MoE-13B-v0.1
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 88.32
            name: accuracy
        source:
          url: >-
            https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=RubielLabarta/LogoS-7Bx2-MoE-13B-v0.1
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 71.65
            name: accuracy
        source:
          url: >-
            https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=RubielLabarta/LogoS-7Bx2-MoE-13B-v0.1
          name: Open LLM Leaderboard

LogoS-7Bx2-MoE-13B-v0.1

Model built by @RubielLabarta using SLERP merge method. The model is release for research purposes only, commercial use is not allowed.

The LogoS is a model to experiment with the MoE method, which could significantly increase the performance of the original model. The model has 12.9B parameters.

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 77.14
AI2 Reasoning Challenge (25-Shot) 74.49
HellaSwag (10-Shot) 89.07
MMLU (5-Shot) 64.74
TruthfulQA (0-shot) 74.57
Winogrande (5-shot) 88.32
GSM8k (5-shot) 71.65