Edit model card
YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co./docs/hub/model-cards#model-card-metadata)

Quantization made by Richard Erkhov.

Github

Discord

Request more models

AutoCoder_S_6.7B - GGUF

Original model description:

license: apache-2.0

We introduced a new model designed for the Code generation task. It 33B version's test accuracy on the HumanEval base dataset surpasses that of GPT-4 Turbo (April 2024). (90.9% vs 90.2%).

Additionally, compared to previous open-source models, AutoCoder offers a new feature: it can automatically install the required packages and attempt to run the code until it deems there are no issues, whenever the user wishes to execute the code.

This is the 6.7B version of AutoCoder. Its base model is deepseeker-coder.

See details on the AutoCoder GitHub.

Simple test script:

model_path = ""
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path, 
                                             device_map="auto")

HumanEval = load_dataset("evalplus/humanevalplus")

Input = "" # input your question here
 
messages=[
    { 'role': 'user', 'content': Input}
]
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, 
                                        return_tensors="pt").to(model.device)

outputs = model.generate(inputs, 
                        max_new_tokens=1024, 
                        do_sample=False, 
                        temperature=0.0,
                        top_p=1.0, 
                        num_return_sequences=1, 
                        eos_token_id=tokenizer.eos_token_id)

answer = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)

Paper: https://arxiv.org/abs/2405.14906

Downloads last month
115
GGUF
Model size
6.74B params
Architecture
llama

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

Inference API
Unable to determine this model's library. Check the docs .