See axolotl config
axolotl version: 0.5.0
base_model: meta-llama/Llama-3.1-8B-Instruct
load_in_8bit: false
load_in_4bit: false
strict: false
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: Sandevistan_cleaned.jsonl
type: customllama3_stan
dataset_prepared_path: last_run_prepared
val_set_size: 0.05
output_dir: ./outputs/out
fix_untrained_tokens: true
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true
wandb_project: Pneuma
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 16
micro_batch_size: 8
num_epochs: 2
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 0.0000078
max_grad_norm: 1
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: unsloth
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true
eval_sample_packing: false
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true
hub_model_id: Replete-AI/L3.1-Pneuma-8B
hub_strategy: every_save
warmup_steps: 0
evals_per_epoch: 3
eval_table_size:
saves_per_epoch: 3
debug:
deepspeed:
weight_decay: 0.1
fsdp:
fsdp_config:
special_tokens:
bos_token: "<|begin_of_text|>"
eos_token: "<|end_of_text|>"
pad_token: "<|end_of_text|>"
tokens:
L3.1-Pneuma-8B
This model is a fine-tuned version of meta-llama/Llama-3.1-8B-Instruct on the Sandevistan dataset. It achieves the following results on the evaluation set:
- Loss: 2.4357
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7.8e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.0731 | 0.0023 | 1 | 2.7679 |
0.6458 | 0.3338 | 143 | 2.4576 |
0.6504 | 0.6675 | 286 | 2.4407 |
1.112 | 1.0019 | 429 | 2.4358 |
0.6014 | 1.3357 | 572 | 2.4358 |
0.6194 | 1.6694 | 715 | 2.4357 |
Framework versions
- Transformers 4.46.1
- Pytorch 2.3.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.3
- Downloads last month
- 41
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.