|
--- |
|
language: es |
|
tags: |
|
- zero-shot-classification |
|
- nli |
|
- pytorch |
|
datasets: |
|
- xnli |
|
pipeline_tag: zero-shot-classification |
|
license: apache-2.0 |
|
widget: |
|
- text: "El autor se perfila, a los 50 años de su muerte, como uno de los grandes de su siglo" |
|
candidate_labels: "cultura, sociedad, economia, salud, deportes" |
|
|
|
--- |
|
# Zero-shot SELECTRA: A zero-shot classifier based on SELECTRA |
|
|
|
*Zero-shot SELECTRA* is a [SELECTRA model](https://huggingface.co./Recognai/selectra_small) fine-tuned on the Spanish portion of the [XNLI dataset](https://huggingface.co./datasets/xnli). You can use it with Hugging Face's [Zero-shot pipeline](https://huggingface.co./transformers/master/main_classes/pipelines.html#transformers.ZeroShotClassificationPipeline) to make [zero-shot classifications](https://joeddav.github.io/blog/2020/05/29/ZSL.html). |
|
|
|
In comparison to our previous zero-shot classifier [based on BETO](https://huggingface.co./Recognai/bert-base-spanish-wwm-cased-xnli), zero-shot SELECTRA is **much more lightweight**. As shown in the *Metrics* section, the *small* version (5 times fewer parameters) performs slightly worse, while the *medium* version (3 times fewer parameters) **outperforms** the BETO based zero-shot classifier. |
|
|
|
## Usage |
|
|
|
```python |
|
from transformers import pipeline |
|
classifier = pipeline("zero-shot-classification", |
|
model="Recognai/zeroshot_selectra_medium") |
|
|
|
classifier( |
|
"El autor se perfila, a los 50 años de su muerte, como uno de los grandes de su siglo", |
|
candidate_labels=["cultura", "sociedad", "economia", "salud", "deportes"], |
|
hypothesis_template="Este ejemplo es {}." |
|
) |
|
"""Output |
|
{'sequence': 'El autor se perfila, a los 50 años de su muerte, como uno de los grandes de su siglo', |
|
'labels': ['sociedad', 'cultura', 'economia', 'salud', 'deportes'], |
|
'scores': [0.6450043320655823, |
|
0.16710571944713593, |
|
0.08507631719112396, |
|
0.0759836807847023, |
|
0.026829993352293968]} |
|
""" |
|
``` |
|
The `hypothesis_template` parameter is important and should be in Spanish. **In the widget on the right, this parameter is set to its default value: "This example is {}.", so different results are expected.** |
|
|
|
## Demo and tutorial |
|
|
|
If you want to see this model in action, we have created a basic tutorial using [Rubrix](https://www.rubrix.ml/), a free and open-source tool to *explore, annotate, and monitor data for NLP*. |
|
|
|
The tutorial shows you how to evaluate this classifier for news categorization in Spanish, and how it could be used to build a training set for training a supervised classifier (which might be useful if you want obtain more precise results or improve the model over time). |
|
|
|
You can [find the tutorial here](https://rubrix.readthedocs.io/en/master/tutorials/zeroshot_data_annotation.html). |
|
|
|
See the video below showing the predictions within the annotation process (see that the predictions are almost correct for every example). |
|
|
|
<video width="100%" controls><source src="https://github.com/recognai/rubrix-materials/raw/main/tutorials/videos/zeroshot_selectra_news_data_annotation.mp4" type="video/mp4"></video> |
|
|
|
## Metrics |
|
|
|
| Model | Params | XNLI (acc) | \*MLSUM (acc) | |
|
| --- | --- | --- | --- | |
|
| [zs BETO](https://huggingface.co./Recognai/bert-base-spanish-wwm-cased-xnli) | 110M | 0.799 | 0.530 | |
|
| zs SELECTRA medium | 41M | **0.807** | **0.589** | |
|
| [zs SELECTRA small](https://huggingface.co./Recognai/zeroshot_selectra_small) | **22M** | 0.795 | 0.446 | |
|
|
|
\*evaluated with zero-shot learning (ZSL) |
|
|
|
- **XNLI**: The stated accuracy refers to the test portion of the [XNLI dataset](https://huggingface.co./datasets/xnli), after finetuning the model on the training portion. |
|
- **MLSUM**: For this accuracy we take the test set of the [MLSUM dataset](https://huggingface.co./datasets/mlsum) and classify the summaries of 5 selected labels. For details, check out our [evaluation notebook](https://github.com/recognai/selectra/blob/main/zero-shot_classifier/evaluation.ipynb) |
|
|
|
## Training |
|
|
|
Check out our [training notebook](https://github.com/recognai/selectra/blob/main/zero-shot_classifier/training.ipynb) for all the details. |
|
|
|
## Authors |
|
|
|
- David Fidalgo ([GitHub](https://github.com/dcfidalgo)) |
|
- Daniel Vila ([GitHub](https://github.com/dvsrepo)) |
|
- Francisco Aranda ([GitHub](https://github.com/frascuchon)) |
|
- Javier Lopez ([GitHub](https://github.com/javispp)) |