Ahma-3B-Slerp

Ahma-3B-Slerp is a merge of the following models using LazyMergekit:

🧩 Configuration

slices:
  - sources:
      - model: Finnish-NLP/Ahma-3B_hf_2024_06_20_08_52_28_checkpoint-3140
        layer_range: [0, 26]
      - model: Finnish-NLP/Ahma-3B_hf_2024_06_09_15_42_08_checkpoint-1836
        layer_range: [0, 26]
merge_method: slerp
base_model: Finnish-NLP/Ahma-3B_hf_2024_06_20_08_52_28_checkpoint-3140
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5
dtype: bfloat16

💻 Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "RASMUS/Ahma-3B-Slerp"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Downloads last month
10
Safetensors
Model size
3.63B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for RASMUS/Ahma-3B-Slerp