gemma-2b-openhermes
gemma-2b-openhermes is a variant of the Gemma 2B language model, which has been further fine-tuned on the OpenHermes-2.5 preference dataset using QLoRA.
Usage
Chat Template
The instruction-tuned models use a chat template that must be adhered to for conversational use. The easiest way to apply it is using the tokenizer's built-in chat template, as shown in the following snippet.
Let's load the model and apply the chat template to a conversation. In this example, we'll start with a single user interaction:
from transformers import AutoTokenizer, AutoModelForCausalLM
import transformers
import torch
model_id = "abideen/gemma-2b-openhermes"
dtype = torch.bfloat16
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="cuda",
torch_dtype=dtype,
)
chat = [{ "role": "user", "content": "What is a Language Model?" }]
prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
After the prompt is ready, generation can be performed like this:
inputs = tokenizer.encode(prompt, add_special_tokens=True, return_tensors="pt")
outputs = model.generate(input_ids=inputs.to(model.device), max_new_tokens=250)
print(tokenizer.decode(outputs[0]))
Inputs and outputs
- Input: Text string, such as a question, a prompt, or a document to be summarized.
- Output: Generated English-language text in response to the input, such as an answer to a question, or a summary of a document.
π Evaluation results
Nous Benchmark
Agieval
Task | Version | Metric | Value | StdErr | |
---|---|---|---|---|---|
agieval_aqua_rat | 0 | acc | 24.02 | _ | 2.69 |
agieval_aqua_rat | 0 | acc_norm | 24.02 | _ | 2.69 |
agieval_logiqa_en | 0 | acc | 23.20 | _ | 1.66 |
agieval_logiqa_en | 0 | acc_norm | 24.42 | _ | 1.69 |
agieval_lsat_ar | 0 | acc | 18.26 | _ | 2.55 |
agieval_lsat_ar | 0 | acc_norm | 18.70 | _ | 2.58 |
agieval_lsat_lr | 0 | acc | 22.35 | _ | 1.85 |
agieval_lsat_lr | 0 | acc_norm | 23.53 | _ | 1.88 |
agieval_lsat_rc | 0 | acc | 20.82 | _ | 2.48 |
agieval_lsat_rc | 0 | acc_norm | 20.07 | _ | 2.45 |
agieval_sat_en | 0 | acc | 32.52 | _ | 3.27 |
agieval_sat_en | 0 | acc_norm | 32.52 | _ | 3.27 |
agieval_sat_en_without_passage | 0 | acc | 25.73 | _ | 3.05 |
agieval_sat_en_without_passage | 0 | acc_norm | 24.27 | _ | 2.99 |
agieval_sat_math | 0 | acc | 25.00 | _ | 2.93 |
agieval_sat_math | 0 | acc_norm | 20.91 | _ | 2.75 |
Average: 24.11 |
GPT4ALL
Task | Version | Metric | Value | StdErr | |
---|---|---|---|---|---|
arc_challenge | 0 | acc | 21.77 | _ | 1.21 |
arc_challenge | 0 | acc_norm | 24.15 | _ | 1.25 |
arc_easy | 0 | acc | 37.37 | _ | 0.99 |
arc_easy | 0 | acc_norm | 36.95 | _ | 0.99 |
boolq | 1 | acc | 65.60 | _ | 0.83 |
hellaswag | 0 | acc | 34.54 | _ | 0.47 |
hellaswag | 0 | acc_norm | 40.54 | _ | 0.49 |
openbookqa | 0 | acc | 15.00 | _ | 1.59 |
openbookqa | 0 | acc_norm | 27.40 | _ | 2.00 |
piqa | 0 | acc | 60.88 | _ | 1.14 |
piqa | 0 | acc_norm | 60.55 | _ | 1.14 |
winogrande | 0 | acc | 50.91 | _ | 1.41 |
Average: 40.01 |
BigBench
Task | Version | Metric | Value | Std Err |
---|---|---|---|---|
bigbench_causal_judgement | 0 | MCG | 50 | 2.26 |
bigbench_date_understanding | 0 | MCG | 49.14 | 2.18 |
bigbench_disambiguation_qa | 0 | MCG | 49.31 | 2.74 |
bigbench_geometric_shapes | 0 | MCG | 14.18 | 1.37 |
bigbench_logical_deduction_5objs | 0 | MCG | 49.41 | 2.73 |
bigbench_logical_deduction_7objs | 0 | MCG | 41.48 | 2.46 |
bigbench_logical_deduction_3objs | 0 | MCG | 69.33 | 2.75 |
bigbench_movie_recommendation | 0 | MCG | 51.71 | 2.25 |
bigbench_navigate | 0 | MCG | 50 | 1.58 |
bigbench_reasoning_colored_obj | 0 | MCG | 51.92 | 0.99 |
bigbench_ruin_names | 0 | MCG | 48.14 | 2.01 |
bigbench_salient_trans_err_detec | 0 | MCG | 39.92 | 1.2 |
bigbench_snarks | 0 | MCG | 64.14 | 3.71 |
bigbench_sports_understanding | 0 | MCG | 55.31 | 1.59 |
bigbench_temporal_sequences | 0 | MCG | 46.92 | 1.4 |
bigbench_tsk_shuff_objs_5 | 0 | MCG | 25.04 | 1.01 |
bigbench_tsk_shuff_objs_7 | 0 | MCG | 15.04 | 0.72 |
bigbench_tsk_shuff_objs_3 | 0 | MCG | 55.33 | 2.75 |
Average: 44.75 |
TruthfulQA
Task | Version | Metric | Value | Std Err |
---|---|---|---|---|
truthfulqa_mc | 1 | mc1 | 30.11 | 1.61 |
truthfulqa_mc | 1 | mc2 | 47.69 | 1.61 |
Average: 38.90 |
Openllm Benchmark
Task | Version | Metric | Value | Stderr | |
---|---|---|---|---|---|
arc_challenge | 0 | acc | 40.44 | Β± | 1.43 |
acc_norm | 43.81 | Β± | 1.34 | ||
hellaswag | 0 | acc | 48.1 | Β± | 0.45 |
acc_norm | 62.73 | Β± | 0.32 | ||
gsm8k | 0 | acc | 5.6 | Β± | 0.6 |
winogrande | 0 | acc | 60.91 | Β± | 1.3 |
mmlu | 0 | acc | 37.62 | Β± | 0.6 |
Average: 73.5%
TruthfulQA
Task | Version | Metric | Value | Stderr | |
---|---|---|---|---|---|
truthfulqa_mc | 1 | mc1 | 29.00 | Β± | 1.58 |
mc2 | 45.83 | Β± | 1.59 |
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 1300
π Axolotl Configuration
base_model: google/gemma-2b-it
model_type: GemmaForCausalLM
tokenizer_type: GemmaTokenizer
trust_remote_code: true
load_in_8bit: false
load_in_4bit: true
strict: false
rl: dpo
chat_template: chatml
datasets:
- path: mlabonne/chatml-OpenHermes2.5-dpo-binarized-alpha
split: train
type: chatml.intel
dataset_prepared_path:
val_set_size: 0.01
output_dir: ./out
adapter: qlora
lora_model_dir:
sequence_len: 1800
sample_packing: false
pad_to_sequence_len: false
lora_r: 16
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
wandb_project: gemma
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 8
micro_batch_size: 1
num_epochs: 1
optimizer: paged_adamw_32bit
lr_scheduler: cosine
learning_rate: 5e-7
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: true
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: false
warmup_steps: 100
evals_per_epoch: 1
eval_table_size:
eval_table_max_new_tokens: 128
save_steps: 1000
max_steps: 1300
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
Framework versions
- Transformers 4.39.0.dev0
- Pytorch 2.1.2+cu118
- Datasets 2.17.0
- Tokenizers 0.15.0
- axolotl: 0.4.0
- Downloads last month
- 13
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for QueryloopAI/gemma-2b-openhermes
Base model
google/gemma-2b-it