license: llama3
library_name: transformers
tags:
- mergekit
- merge
- not-for-all-audiences
base_model: Hastagaras/Halu-8B-Llama3-Blackroot
model-index:
- name: Halu-8B-Llama3-Blackroot
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 63.82
name: normalized accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Hastagaras/Halu-8B-Llama3-Blackroot
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 84.55
name: normalized accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Hastagaras/Halu-8B-Llama3-Blackroot
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 67.04
name: accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Hastagaras/Halu-8B-Llama3-Blackroot
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 53.28
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Hastagaras/Halu-8B-Llama3-Blackroot
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 79.48
name: accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Hastagaras/Halu-8B-Llama3-Blackroot
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 70.51
name: accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Hastagaras/Halu-8B-Llama3-Blackroot
name: Open LLM Leaderboard
pipeline_tag: text-generation
Halu-8B-Llama3-Blackroot-GGUF
This is quantized version of Hastagaras/Halu-8B-Llama3-Blackroot created using llama.cpp
Model Description
VERY IMPORTANT: This model has not been extensively tested or evaluated, and its performance characteristics are currently unknown. It may generate harmful, biased, or inappropriate content. Please exercise caution and use it at your own risk and discretion.
I just tried saishf's merged model, and it's great. So I decided to try a similar merge method with Blackroot's LoRA that I had found earlier.
I don't know what to say about this model... this model is very strange...Maybe because Blackroot's amazing Loras used human data and not synthetic data, hence the model turned out to be very human-like...even the actions or narrations.
WARNING: This model is very unsafe in certain parts...especially in RP.
IMATRIX GGUF IS HERE made available by Lewdiculous
STATIC GGUF IS HERE made avaible by mradermacher
Merge Method
This model was merged using the Model Stock merge method using Hastagaras/Halu-8B-Llama3-v0.3 as a base.
Models Merged
The following models were included in the merge:
- Hastagaras/Halu-8B-Llama3-v0.3 + Blackroot/Llama-3-LongStory-LORA
- Hastagaras/Halu-8B-Llama3-v0.3 + Blackroot/Llama-3-8B-Abomination-LORA
Configuration
The following YAML configuration was used to produce this model:
models:
- model: Hastagaras/Halu-8B-Llama3-v0.3+Blackroot/Llama-3-LongStory-LORA
- model: Hastagaras/Halu-8B-Llama3-v0.3+Blackroot/Llama-3-8B-Abomination-LORA
merge_method: model_stock
base_model: Hastagaras/Halu-8B-Llama3-v0.3
dtype: bfloat16
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 69.78 |
AI2 Reasoning Challenge (25-Shot) | 63.82 |
HellaSwag (10-Shot) | 84.55 |
MMLU (5-Shot) | 67.04 |
TruthfulQA (0-shot) | 53.28 |
Winogrande (5-shot) | 79.48 |
GSM8k (5-shot) | 70.51 |