Example Usage

from transformers import T5Tokenizer, T5ForConditionalGeneration

tokenizer = T5Tokenizer.from_pretrained("QizhiPei/biot5-base-text2mol", model_max_length=512)
model = T5ForConditionalGeneration.from_pretrained('QizhiPei/biot5-base-text2mol')

task_definition = 'Definition: You are given a molecule description in English. Your job is to generate the molecule SELFIES that fits the description.\n\n'
text_input = 'The molecule is a monocarboxylic acid anion obtained by deprotonation of the carboxy and sulfino groups of 3-sulfinopropionic acid. Major microspecies at pH 7.3 It is an organosulfinate oxoanion and a monocarboxylic acid anion. It is a conjugate base of a 3-sulfinopropionic acid.'
task_input = f'Now complete the following example -\nInput: {text_input}\nOutput: '

model_input = task_definition + task_input
input_ids = tokenizer(model_input, return_tensors="pt").input_ids

generation_config = model.generation_config
generation_config.max_length = 512
generation_config.num_beams = 1

outputs = model.generate(input_ids, generation_config=generation_config)
output_selfies = tokenizer.decode(outputs[0], skip_special_tokens=True).replace(' ', '')
print(output_selfies)

import selfies as sf
output_smiles = sf.decoder(output_selfies)
print(output_smiles)

References

For more information, please refer to our paper and GitHub repository.

Paper: BioT5: Enriching Cross-modal Integration in Biology with Chemical Knowledge and Natural Language Associations

GitHub: BioT5

Authors: Qizhi Pei, Wei Zhang, Jinhua Zhu, Kehan Wu, Kaiyuan Gao, Lijun Wu, Yingce Xia, and Rui Yan

Downloads last month
37
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train QizhiPei/biot5-base-text2mol

Space using QizhiPei/biot5-base-text2mol 1

Collection including QizhiPei/biot5-base-text2mol