Edit model card

segformer-b0-finetuned-breastcancer-oct-1

This model is a fine-tuned version of nvidia/mit-b0 on the as-cle-bert/breastcancer-semantic-segmentation dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5929
  • Mean Iou: 0.3697
  • Mean Accuracy: 0.4304
  • Overall Accuracy: 0.8938
  • Accuracy Ignore: 0.1439
  • Accuracy Benign Breast Cancer: 0.2911
  • Accuracy Malignant Breast Cancer: 0.3033
  • Accuracy Background: 0.9835
  • Iou Ignore: 0.1083
  • Iou Benign Breast Cancer: 0.2002
  • Iou Malignant Breast Cancer: 0.2707
  • Iou Background: 0.8995

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Ignore Accuracy Benign Breast Cancer Accuracy Malignant Breast Cancer Accuracy Background Iou Ignore Iou Benign Breast Cancer Iou Malignant Breast Cancer Iou Background
1.2085 0.625 10 1.3371 0.2725 0.3749 0.7828 0.0304 0.2701 0.3474 0.8519 0.0035 0.0999 0.1818 0.8046
1.0916 1.25 20 1.2205 0.3076 0.3659 0.8755 0.0790 0.1894 0.2199 0.9754 0.0266 0.1231 0.1986 0.8820
1.0192 1.875 30 1.0365 0.3451 0.4120 0.8845 0.1439 0.2225 0.3074 0.9744 0.0524 0.1782 0.2617 0.8879
0.8858 2.5 40 0.9036 0.3147 0.3957 0.8707 0.1926 0.0816 0.3512 0.9573 0.0443 0.0738 0.2648 0.8761
0.7886 3.125 50 0.8572 0.3055 0.3844 0.8596 0.1766 0.1460 0.2618 0.9531 0.0620 0.0901 0.2061 0.8637
0.7061 3.75 60 0.7466 0.3229 0.3884 0.8787 0.1641 0.1298 0.2871 0.9727 0.0662 0.1029 0.2407 0.8820
0.7679 4.375 70 0.7367 0.3172 0.3833 0.8790 0.1766 0.0952 0.2873 0.9740 0.0659 0.0746 0.2458 0.8824
0.754 5.0 80 0.7271 0.3196 0.3846 0.8800 0.1746 0.1306 0.2556 0.9778 0.0707 0.0976 0.2264 0.8837
0.6705 5.625 90 0.6677 0.3286 0.3967 0.8815 0.1714 0.1968 0.2388 0.9796 0.0777 0.1352 0.2146 0.8871
0.7758 6.25 100 0.6278 0.3315 0.3980 0.8835 0.1630 0.2416 0.2025 0.9848 0.0979 0.1462 0.1896 0.8922
0.6866 6.875 110 0.6230 0.3489 0.4119 0.8887 0.1641 0.2351 0.2649 0.9837 0.0981 0.1614 0.2424 0.8938
0.5664 7.5 120 0.6334 0.3545 0.4154 0.8903 0.1638 0.2064 0.3102 0.9811 0.0982 0.1506 0.2751 0.8940
0.6008 8.125 130 0.6034 0.3478 0.4016 0.8907 0.1418 0.2122 0.2660 0.9866 0.1012 0.1477 0.2470 0.8952
0.5459 8.75 140 0.5930 0.3661 0.4277 0.8934 0.1616 0.2505 0.3161 0.9828 0.1042 0.1866 0.2734 0.9001
0.5619 9.375 150 0.5966 0.3695 0.4306 0.8937 0.1365 0.3089 0.2929 0.9841 0.1078 0.2067 0.2633 0.9000
0.5807 10.0 160 0.5929 0.3697 0.4304 0.8938 0.1439 0.2911 0.3033 0.9835 0.1083 0.2002 0.2707 0.8995

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.5.0+cu121
  • Datasets 3.1.0
  • Tokenizers 0.19.1
Downloads last month
15
Safetensors
Model size
3.72M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for PushkarA07/segformer-b0-finetuned-breastcancer-oct-1

Base model

nvidia/mit-b0
Finetuned
(314)
this model