distilbert-base-uncased-lora-text-classification
This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.9320
- Accuracy: {'accuracy': 0.892}
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 250 | 0.3865 | {'accuracy': 0.875} |
0.4238 | 2.0 | 500 | 0.5617 | {'accuracy': 0.855} |
0.4238 | 3.0 | 750 | 0.5690 | {'accuracy': 0.89} |
0.1969 | 4.0 | 1000 | 0.6078 | {'accuracy': 0.903} |
0.1969 | 5.0 | 1250 | 0.7046 | {'accuracy': 0.896} |
0.0629 | 6.0 | 1500 | 0.8598 | {'accuracy': 0.895} |
0.0629 | 7.0 | 1750 | 0.8485 | {'accuracy': 0.894} |
0.0342 | 8.0 | 2000 | 0.8967 | {'accuracy': 0.896} |
0.0342 | 9.0 | 2250 | 0.9496 | {'accuracy': 0.89} |
0.0085 | 10.0 | 2500 | 0.9320 | {'accuracy': 0.892} |
Framework versions
- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
- Downloads last month
- 3
Model tree for PrasannaL/distilbert-base-uncased-lora-text-classification
Base model
distilbert/distilbert-base-uncased