PracticeLLM/KoSOLAR-Platypus-10.7B
Model Details
Model Developers Kyujin Han (kyujinpy)
Method
LoRA with quantization.
Base Model
yanolja/KoSOLAR-10.7B-v0.2
Dataset
kyujinpy/KOR-OpenOrca-Platypus-v3.
Hyperparameters
python finetune.py \
--base_model yanolja/KoSOLAR-10.7B-v0.2 \
--data-path kyujinpy/KOR-OpenOrca-Platypus-v3 \
--output_dir ./Ko-PlatypusSOLAR-10.7B \
--batch_size 64 \
--micro_batch_size 1 \
--num_epochs 5 \
--learning_rate 2e-5 \
--cutoff_len 2048 \
--val_set_size 0 \
--lora_r 64 \
--lora_alpha 64 \
--lora_dropout 0.05 \
--lora_target_modules '[embed_tokens, q_proj, k_proj, v_proj, o_proj, gate_proj, down_proj, up_proj, lm_head]' \
--train_on_inputs False \
--add_eos_token False \
--group_by_length False \
--prompt_template_name en_simple \
--lr_scheduler 'cosine' \
Share all of things. It is my belief.
Model Benchmark
Open Ko-LLM leaderboard & lm-evaluation-harness(zero-shot)
- Follow up as Ko-link.
Model Average ARC HellaSwag MMLU TruthfulQA Ko-CommonGenV2 PracticeLLM/KoSOLAR-Platypus-10.7B --- --- --- --- --- --- LDCC/LDCC-SOLAR-10.7B 59.34 55.38 65.56 53.38 64.39 57.97 yanolja/KoSOLAR-10.7B-v0.2 55.62 50.51 62.29 53.76 47.31 64.23 megastudyedu/M-SOLAR-10.7B-v1.3 56.64 51.37 60.93 54.91 48.45 67.53
Implementation Code
### KO-Platypus
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
repo = "PracticeLLM/KoSOLAR-Platypus-10.7B"
OpenOrca = AutoModelForCausalLM.from_pretrained(
repo,
return_dict=True,
torch_dtype=torch.float16,
device_map='auto'
)
OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo)
- Downloads last month
- 1,670
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.