test

This model is a fine-tuned version of xlm-roberta-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 3.1338
  • Exact Match: 19.4521
  • F1: 23.8484

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 2
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Exact Match F1
2.2415 1.0 13084 3.1703 19.3151 23.2740
1.3811 2.0 26168 3.1338 19.4521 23.8484

Framework versions

  • PEFT 0.7.2.dev0
  • Transformers 4.37.0.dev0
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
6
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for Phanh2532/XLMQLoraCustom

Adapter
(22)
this model