metadata
base_model: KBLab/bert-base-swedish-cased-ner
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: testThesisSmall
results: []
testThesisSmall
This model is a fine-tuned version of KBLab/bert-base-swedish-cased-ner on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5213
- Precision: 0.4406
- Recall: 0.2977
- F1: 0.3553
- Accuracy: 0.8680
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 15 | 0.6246 | 0.3586 | 0.1739 | 0.2342 | 0.8469 |
No log | 2.0 | 30 | 0.5443 | 0.3785 | 0.2241 | 0.2815 | 0.8583 |
No log | 3.0 | 45 | 0.5213 | 0.4406 | 0.2977 | 0.3553 | 0.8680 |
Framework versions
- Transformers 4.33.0
- Pytorch 2.0.1
- Datasets 2.14.5
- Tokenizers 0.13.3