unicorn_track_tiny_mask

Table of Contents

Model Details

Unicorn accomplishes the great unification of the network architecture and the learning paradigm for four tracking tasks. Unicorn puts forwards new state-of-the-art performance on many challenging tracking benchmarks using the same model parameters. This model has an input size of 800x1280.

Uses

Direct Use

This model can be used for:

  • Single Object Tracking (SOT)
  • Multiple Object Tracking (MOT)
  • Video Object Segmentation (VOS)
  • Multi-Object Tracking and Segmentation (MOTS)

Evaluation Results

LaSOT AUC (%): 67.7 BDD100K mMOTA (%): 39.9 DAVIS17 J&F (%): 68.0 BDD100K MOTS mMOTSA (%): 29.7

Citation Information

@inproceedings{unicorn,
  title={Towards Grand Unification of Object Tracking},
  author={Yan, Bin and Jiang, Yi and Sun, Peize and Wang, Dong and Yuan, Zehuan and Luo, Ping and Lu, Huchuan},
  booktitle={ECCV},
  year={2022}
}
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Examples
Inference API (serverless) has been turned off for this model.