W8A8 quant of Dolphin 2.9.3 Mistral 7b v0.3 32k π¬
Quantization script: https://github.com/NeoChen1024/scripts/blob/master/llm-compressor-quantize.py
Curated and trained by Eric Hartford and Cognitive Computations
Discord: https://discord.gg/h3K4XGj2RH
Our appreciation for the sponsors of Dolphin 2.9.3:
- Crusoe Cloud - provided excellent on-demand 8xH100 node
- OnDemand - provided inference sponsorship
This model is based on mistralai/Mistral-7B-v0.3, and is governed by the apache 2.0 license.
The base model has 32k context, and our finetuning took place with 8192 sequence length.
Dolphin 2.9.3 uses ChatML prompt template format.
example:
<|im_start|>system
You are Dolphin, a helpful AI assistant.<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
Dolphin-2.9.3 has a variety of instruction following, conversational, and coding skills. It also has initial agentic abilities and supports function calling.
Dolphin is uncensored. We have filtered the dataset to remove alignment and bias. This makes the model more compliant. You are advised to implement your own alignment layer before exposing the model as a service. It will be highly compliant with any requests, even unethical ones. Please read my blog post about uncensored models. https://erichartford.com/uncensored-models You are responsible for any content you create using this model. Enjoy responsibly.
Dolphin is licensed according to apache 2.0 license. We grant permission for any use, including commercial. Dolphin was trained on data generated from GPT4, among other models.
Evals
Training
See axolotl config
axolotl version: 0.4.0
base_model: mistralai/Mistral-7B-v0.3
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
# load_in_4bit: true
strict: false
datasets:
- path: /workspace/datasets/dolphin-2.9.3/dolphin201-sharegpt2.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9.3/SystemChat_filtered_sharegpt.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9.3/SystemChat_multilingual_sharegpt.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9.3/dolphin-coder-translate-sharegpt2.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9.3/dolphin-coder-codegen-sharegpt2.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9.3/m-a-p_Code-Feedback-sharegpt-unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9.3/m-a-p_CodeFeedback-Filtered-Instruction-sharegpt-unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9.3/not_samantha_norefusals.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9.3/Orca-Math-resort-unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9.3/agent_instruct_react_unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9.3/toolbench_instruct_j1s1_3k_unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9.3/toolbench_negative_unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9.3/toolbench_react_10p_unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9.3/toolbench_tflan_cot_30p_unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9.3/openhermes200k_unfiltered.jsonl
type: sharegpt
conversation: chatml
chat_template: chatml
# adapter: qlora
# lora_r: 128
# lora_alpha: 16
# lora_modules_to_save: [embed_tokens, lm_head]
# lora_dropout: 0.05
# lora_target_linear: true
dataset_prepared_path: /workspace/axolotl/dolph-2.9.3-prepared
val_set_size: 0.01
output_dir: /workspace/axolotl/dolphin-2.9.3-mistral-7B
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
wandb_project: dolphin-2.9.3-Mistral-7B
wandb_watch:
wandb_run_id:
wandb_log_model:
gradient_accumulation_steps: 16
micro_batch_size: 1
num_epochs: 3
optimizer: adamw_8bit
lr_scheduler: cosine
learning_rate: 5e-6
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32:
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 100
# evals_per_epoch: 4
eval_table_size:
saves_per_epoch: 1
save_total_limit: 2
save_steps:
debug:
deepspeed: /workspace/axolotl/deepspeed_configs/zero3_bf16.json
weight_decay: 0.1
fsdp:
fsdp_config:
special_tokens:
eos_token: "<|im_end|>"
tokens:
- "<|im_start|>"
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 19.31 |
IFEval (0-Shot) | 41.26 |
BBH (3-Shot) | 26.91 |
MATH Lvl 5 (4-Shot) | 4.83 |
GPQA (0-shot) | 4.70 |
MuSR (0-shot) | 17.93 |
MMLU-PRO (5-shot) | 20.23 |
- Downloads last month
- 9
Model tree for NeoChen1024/dolphin-2.9.3-mistral-7B-32k-W8A8
Base model
mistralai/Mistral-7B-v0.3Datasets used to train NeoChen1024/dolphin-2.9.3-mistral-7B-32k-W8A8
Evaluation results
- strict accuracy on IFEval (0-Shot)Open LLM Leaderboard41.260
- normalized accuracy on BBH (3-Shot)Open LLM Leaderboard26.910
- exact match on MATH Lvl 5 (4-Shot)Open LLM Leaderboard4.830
- acc_norm on GPQA (0-shot)Open LLM Leaderboard4.700
- acc_norm on MuSR (0-shot)Open LLM Leaderboard17.930
- accuracy on MMLU-PRO (5-shot)test set Open LLM Leaderboard20.230