File size: 11,334 Bytes
7927667 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
---
library_name: setfit
tags:
- setfit
- absa
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
metrics:
- accuracy
widget:
- text: waiter:After sitting at the table with empty glasses for a 1/2 hour, we had
to ask the busboys to get us drinks as our waiter was nowhere to be found.
- text: presentation:The service was impeccible, the menu traditional but inventive
and presentation for the mostpart excellent but the food itself came up short.
- text: Friday night:Without reservations on a Friday night at 8:30 I was promptly
seated and given top-notch recommendations from both the host and my waiter.
- text: time:last time, the waiter told my roommate he'd have to charge her $5 for
mushrooms as one of her omelette choices (never heard that at my other favorite
brunch places.
- text: waitstaff:And the waitstaff has very little knowledge of the food, they served
me the wrong dish and no one could identify what it was that they gave me, someone
said pork chop, someone said lamb, and then they insisted it should be fine since
it was the same price.
pipeline_tag: text-classification
inference: false
base_model: sentence-transformers/paraphrase-mpnet-base-v2
model-index:
- name: SetFit Aspect Model with sentence-transformers/paraphrase-mpnet-base-v2
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.8051948051948052
name: Accuracy
---
# SetFit Aspect Model with sentence-transformers/paraphrase-mpnet-base-v2
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co./sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of filtering aspect span candidates.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
This model was trained within the context of a larger system for ABSA, which looks like so:
1. Use a spaCy model to select possible aspect span candidates.
2. **Use this SetFit model to filter these possible aspect span candidates.**
3. Use a SetFit model to classify the filtered aspect span candidates.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co./sentence-transformers/paraphrase-mpnet-base-v2)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **spaCy Model:** en_core_web_lg
- **SetFitABSA Aspect Model:** [NazmusAshrafi/atsa-mams-ds-setfit-MiniLM-mpnet-absa-tesla-tweet-aspect](https://huggingface.co./NazmusAshrafi/atsa-mams-ds-setfit-MiniLM-mpnet-absa-tesla-tweet-aspect)
- **SetFitABSA Polarity Model:** [NazmusAshrafi/atsa-mams-ds-setfit-MiniLM-mpnet-absa-tesla-tweet-polarity](https://huggingface.co./NazmusAshrafi/atsa-mams-ds-setfit-MiniLM-mpnet-absa-tesla-tweet-polarity)
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 2 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co./datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co./blog/setfit)
### Model Labels
| Label | Examples |
|:----------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| aspect | <ul><li>'decor:The decor is not special at all but their food and amazing prices make up for it.'</li><li>'food:The decor is not special at all but their food and amazing prices make up for it.'</li><li>'prices:The decor is not special at all but their food and amazing prices make up for it.'</li></ul> |
| no aspect | <ul><li>'party:when tables opened up, the manager sat another party before us.'</li><li>"offerings:Though the menu includes some unorthodox offerings (a peanut butter roll, for instance), the classics are pure and great--we've never had better sushi anywhere, including Japan."</li><li>"instance:Though the menu includes some unorthodox offerings (a peanut butter roll, for instance), the classics are pure and great--we've never had better sushi anywhere, including Japan."</li></ul> |
## Evaluation
### Metrics
| Label | Accuracy |
|:--------|:---------|
| **all** | 0.8052 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import AbsaModel
# Download from the 🤗 Hub
model = AbsaModel.from_pretrained(
"NazmusAshrafi/atsa-mams-ds-setfit-MiniLM-mpnet-absa-tesla-tweet-aspect",
"NazmusAshrafi/atsa-mams-ds-setfit-MiniLM-mpnet-absa-tesla-tweet-polarity",
)
# Run inference
preds = model("The food was great, but the venue is just way too busy.")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:--------|:----|
| Word count | 7 | 29.7429 | 63 |
| Label | Training Sample Count |
|:----------|:----------------------|
| no aspect | 115 |
| aspect | 130 |
### Training Hyperparameters
- batch_size: (16, 2)
- num_epochs: (1, 16)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0005 | 1 | 0.2136 | - |
| 0.0263 | 50 | 0.264 | - |
| 0.0527 | 100 | 0.2717 | - |
| 0.0790 | 150 | 0.2099 | - |
| 0.1053 | 200 | 0.1357 | - |
| 0.1316 | 250 | 0.1224 | - |
| 0.1580 | 300 | 0.0305 | - |
| 0.1843 | 350 | 0.0016 | - |
| 0.2106 | 400 | 0.0015 | - |
| 0.2370 | 450 | 0.0004 | - |
| 0.2633 | 500 | 0.0006 | - |
| 0.2896 | 550 | 0.0109 | - |
| 0.3160 | 600 | 0.0002 | - |
| 0.3423 | 650 | 0.0001 | - |
| 0.3686 | 700 | 0.0001 | - |
| 0.3949 | 750 | 0.0003 | - |
| 0.4213 | 800 | 0.0001 | - |
| 0.4476 | 850 | 0.0002 | - |
| 0.4739 | 900 | 0.0001 | - |
| 0.5003 | 950 | 0.0002 | - |
| 0.5266 | 1000 | 0.0001 | - |
| 0.5529 | 1050 | 0.0001 | - |
| 0.5793 | 1100 | 0.0001 | - |
| 0.6056 | 1150 | 0.0001 | - |
| 0.6319 | 1200 | 0.0002 | - |
| 0.6582 | 1250 | 0.0001 | - |
| 0.6846 | 1300 | 0.0001 | - |
| 0.7109 | 1350 | 0.0001 | - |
| 0.7372 | 1400 | 0.0001 | - |
| 0.7636 | 1450 | 0.0001 | - |
| 0.7899 | 1500 | 0.0001 | - |
| 0.8162 | 1550 | 0.0001 | - |
| 0.8425 | 1600 | 0.0169 | - |
| 0.8689 | 1650 | 0.0001 | - |
| 0.8952 | 1700 | 0.0001 | - |
| 0.9215 | 1750 | 0.0001 | - |
| 0.9479 | 1800 | 0.0001 | - |
| 0.9742 | 1850 | 0.0001 | - |
### Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 2.4.0
- spaCy: 3.7.4
- Transformers: 4.37.2
- PyTorch: 2.1.0+cu121
- Datasets: 2.17.1
- Tokenizers: 0.15.2
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |