NazmusAshrafi commited on
Commit
7927667
1 Parent(s): 5a4856c

Add SetFit ABSA model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,254 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: setfit
3
+ tags:
4
+ - setfit
5
+ - absa
6
+ - sentence-transformers
7
+ - text-classification
8
+ - generated_from_setfit_trainer
9
+ metrics:
10
+ - accuracy
11
+ widget:
12
+ - text: waiter:After sitting at the table with empty glasses for a 1/2 hour, we had
13
+ to ask the busboys to get us drinks as our waiter was nowhere to be found.
14
+ - text: presentation:The service was impeccible, the menu traditional but inventive
15
+ and presentation for the mostpart excellent but the food itself came up short.
16
+ - text: Friday night:Without reservations on a Friday night at 8:30 I was promptly
17
+ seated and given top-notch recommendations from both the host and my waiter.
18
+ - text: time:last time, the waiter told my roommate he'd have to charge her $5 for
19
+ mushrooms as one of her omelette choices (never heard that at my other favorite
20
+ brunch places.
21
+ - text: waitstaff:And the waitstaff has very little knowledge of the food, they served
22
+ me the wrong dish and no one could identify what it was that they gave me, someone
23
+ said pork chop, someone said lamb, and then they insisted it should be fine since
24
+ it was the same price.
25
+ pipeline_tag: text-classification
26
+ inference: false
27
+ base_model: sentence-transformers/paraphrase-mpnet-base-v2
28
+ model-index:
29
+ - name: SetFit Aspect Model with sentence-transformers/paraphrase-mpnet-base-v2
30
+ results:
31
+ - task:
32
+ type: text-classification
33
+ name: Text Classification
34
+ dataset:
35
+ name: Unknown
36
+ type: unknown
37
+ split: test
38
+ metrics:
39
+ - type: accuracy
40
+ value: 0.8051948051948052
41
+ name: Accuracy
42
+ ---
43
+
44
+ # SetFit Aspect Model with sentence-transformers/paraphrase-mpnet-base-v2
45
+
46
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of filtering aspect span candidates.
47
+
48
+ The model has been trained using an efficient few-shot learning technique that involves:
49
+
50
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
51
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
52
+
53
+ This model was trained within the context of a larger system for ABSA, which looks like so:
54
+
55
+ 1. Use a spaCy model to select possible aspect span candidates.
56
+ 2. **Use this SetFit model to filter these possible aspect span candidates.**
57
+ 3. Use a SetFit model to classify the filtered aspect span candidates.
58
+
59
+ ## Model Details
60
+
61
+ ### Model Description
62
+ - **Model Type:** SetFit
63
+ - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
64
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
65
+ - **spaCy Model:** en_core_web_lg
66
+ - **SetFitABSA Aspect Model:** [NazmusAshrafi/atsa-mams-ds-setfit-MiniLM-mpnet-absa-tesla-tweet-aspect](https://huggingface.co/NazmusAshrafi/atsa-mams-ds-setfit-MiniLM-mpnet-absa-tesla-tweet-aspect)
67
+ - **SetFitABSA Polarity Model:** [NazmusAshrafi/atsa-mams-ds-setfit-MiniLM-mpnet-absa-tesla-tweet-polarity](https://huggingface.co/NazmusAshrafi/atsa-mams-ds-setfit-MiniLM-mpnet-absa-tesla-tweet-polarity)
68
+ - **Maximum Sequence Length:** 512 tokens
69
+ - **Number of Classes:** 2 classes
70
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
71
+ <!-- - **Language:** Unknown -->
72
+ <!-- - **License:** Unknown -->
73
+
74
+ ### Model Sources
75
+
76
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
77
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
78
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
79
+
80
+ ### Model Labels
81
+ | Label | Examples |
82
+ |:----------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
83
+ | aspect | <ul><li>'decor:The decor is not special at all but their food and amazing prices make up for it.'</li><li>'food:The decor is not special at all but their food and amazing prices make up for it.'</li><li>'prices:The decor is not special at all but their food and amazing prices make up for it.'</li></ul> |
84
+ | no aspect | <ul><li>'party:when tables opened up, the manager sat another party before us.'</li><li>"offerings:Though the menu includes some unorthodox offerings (a peanut butter roll, for instance), the classics are pure and great--we've never had better sushi anywhere, including Japan."</li><li>"instance:Though the menu includes some unorthodox offerings (a peanut butter roll, for instance), the classics are pure and great--we've never had better sushi anywhere, including Japan."</li></ul> |
85
+
86
+ ## Evaluation
87
+
88
+ ### Metrics
89
+ | Label | Accuracy |
90
+ |:--------|:---------|
91
+ | **all** | 0.8052 |
92
+
93
+ ## Uses
94
+
95
+ ### Direct Use for Inference
96
+
97
+ First install the SetFit library:
98
+
99
+ ```bash
100
+ pip install setfit
101
+ ```
102
+
103
+ Then you can load this model and run inference.
104
+
105
+ ```python
106
+ from setfit import AbsaModel
107
+
108
+ # Download from the 🤗 Hub
109
+ model = AbsaModel.from_pretrained(
110
+ "NazmusAshrafi/atsa-mams-ds-setfit-MiniLM-mpnet-absa-tesla-tweet-aspect",
111
+ "NazmusAshrafi/atsa-mams-ds-setfit-MiniLM-mpnet-absa-tesla-tweet-polarity",
112
+ )
113
+ # Run inference
114
+ preds = model("The food was great, but the venue is just way too busy.")
115
+ ```
116
+
117
+ <!--
118
+ ### Downstream Use
119
+
120
+ *List how someone could finetune this model on their own dataset.*
121
+ -->
122
+
123
+ <!--
124
+ ### Out-of-Scope Use
125
+
126
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
127
+ -->
128
+
129
+ <!--
130
+ ## Bias, Risks and Limitations
131
+
132
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
133
+ -->
134
+
135
+ <!--
136
+ ### Recommendations
137
+
138
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
139
+ -->
140
+
141
+ ## Training Details
142
+
143
+ ### Training Set Metrics
144
+ | Training set | Min | Median | Max |
145
+ |:-------------|:----|:--------|:----|
146
+ | Word count | 7 | 29.7429 | 63 |
147
+
148
+ | Label | Training Sample Count |
149
+ |:----------|:----------------------|
150
+ | no aspect | 115 |
151
+ | aspect | 130 |
152
+
153
+ ### Training Hyperparameters
154
+ - batch_size: (16, 2)
155
+ - num_epochs: (1, 16)
156
+ - max_steps: -1
157
+ - sampling_strategy: oversampling
158
+ - body_learning_rate: (2e-05, 1e-05)
159
+ - head_learning_rate: 0.01
160
+ - loss: CosineSimilarityLoss
161
+ - distance_metric: cosine_distance
162
+ - margin: 0.25
163
+ - end_to_end: False
164
+ - use_amp: False
165
+ - warmup_proportion: 0.1
166
+ - seed: 42
167
+ - eval_max_steps: -1
168
+ - load_best_model_at_end: False
169
+
170
+ ### Training Results
171
+ | Epoch | Step | Training Loss | Validation Loss |
172
+ |:------:|:----:|:-------------:|:---------------:|
173
+ | 0.0005 | 1 | 0.2136 | - |
174
+ | 0.0263 | 50 | 0.264 | - |
175
+ | 0.0527 | 100 | 0.2717 | - |
176
+ | 0.0790 | 150 | 0.2099 | - |
177
+ | 0.1053 | 200 | 0.1357 | - |
178
+ | 0.1316 | 250 | 0.1224 | - |
179
+ | 0.1580 | 300 | 0.0305 | - |
180
+ | 0.1843 | 350 | 0.0016 | - |
181
+ | 0.2106 | 400 | 0.0015 | - |
182
+ | 0.2370 | 450 | 0.0004 | - |
183
+ | 0.2633 | 500 | 0.0006 | - |
184
+ | 0.2896 | 550 | 0.0109 | - |
185
+ | 0.3160 | 600 | 0.0002 | - |
186
+ | 0.3423 | 650 | 0.0001 | - |
187
+ | 0.3686 | 700 | 0.0001 | - |
188
+ | 0.3949 | 750 | 0.0003 | - |
189
+ | 0.4213 | 800 | 0.0001 | - |
190
+ | 0.4476 | 850 | 0.0002 | - |
191
+ | 0.4739 | 900 | 0.0001 | - |
192
+ | 0.5003 | 950 | 0.0002 | - |
193
+ | 0.5266 | 1000 | 0.0001 | - |
194
+ | 0.5529 | 1050 | 0.0001 | - |
195
+ | 0.5793 | 1100 | 0.0001 | - |
196
+ | 0.6056 | 1150 | 0.0001 | - |
197
+ | 0.6319 | 1200 | 0.0002 | - |
198
+ | 0.6582 | 1250 | 0.0001 | - |
199
+ | 0.6846 | 1300 | 0.0001 | - |
200
+ | 0.7109 | 1350 | 0.0001 | - |
201
+ | 0.7372 | 1400 | 0.0001 | - |
202
+ | 0.7636 | 1450 | 0.0001 | - |
203
+ | 0.7899 | 1500 | 0.0001 | - |
204
+ | 0.8162 | 1550 | 0.0001 | - |
205
+ | 0.8425 | 1600 | 0.0169 | - |
206
+ | 0.8689 | 1650 | 0.0001 | - |
207
+ | 0.8952 | 1700 | 0.0001 | - |
208
+ | 0.9215 | 1750 | 0.0001 | - |
209
+ | 0.9479 | 1800 | 0.0001 | - |
210
+ | 0.9742 | 1850 | 0.0001 | - |
211
+
212
+ ### Framework Versions
213
+ - Python: 3.10.12
214
+ - SetFit: 1.0.3
215
+ - Sentence Transformers: 2.4.0
216
+ - spaCy: 3.7.4
217
+ - Transformers: 4.37.2
218
+ - PyTorch: 2.1.0+cu121
219
+ - Datasets: 2.17.1
220
+ - Tokenizers: 0.15.2
221
+
222
+ ## Citation
223
+
224
+ ### BibTeX
225
+ ```bibtex
226
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
227
+ doi = {10.48550/ARXIV.2209.11055},
228
+ url = {https://arxiv.org/abs/2209.11055},
229
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
230
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
231
+ title = {Efficient Few-Shot Learning Without Prompts},
232
+ publisher = {arXiv},
233
+ year = {2022},
234
+ copyright = {Creative Commons Attribution 4.0 International}
235
+ }
236
+ ```
237
+
238
+ <!--
239
+ ## Glossary
240
+
241
+ *Clearly define terms in order to be accessible across audiences.*
242
+ -->
243
+
244
+ <!--
245
+ ## Model Card Authors
246
+
247
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
248
+ -->
249
+
250
+ <!--
251
+ ## Model Card Contact
252
+
253
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
254
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/paraphrase-mpnet-base-v2",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.37.2",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.7.0",
5
+ "pytorch": "1.9.0+cu102"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null
9
+ }
config_setfit.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "span_context": 0,
3
+ "normalize_embeddings": false,
4
+ "spacy_model": "en_core_web_lg",
5
+ "labels": [
6
+ "no aspect",
7
+ "aspect"
8
+ ]
9
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a805970e1b9e6cebd4a0d360228be792586d356402672a59a7f1916fd8a25689
3
+ size 437967672
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0d6901da508bf997a23853d4582d39b2c996ba3a6ad90229a6ec939b63b4a8ce
3
+ size 6991
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "104": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "30526": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": true,
49
+ "eos_token": "</s>",
50
+ "mask_token": "<mask>",
51
+ "model_max_length": 512,
52
+ "never_split": null,
53
+ "pad_token": "<pad>",
54
+ "sep_token": "</s>",
55
+ "strip_accents": null,
56
+ "tokenize_chinese_chars": true,
57
+ "tokenizer_class": "MPNetTokenizer",
58
+ "unk_token": "[UNK]"
59
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff