metadata
language:
- nyn
license: apache-2.0
base_model: openai/whisper-base.en
tags:
- whisper-event
- generated_from_trainer
datasets:
- tericlabs
metrics:
- wer
model-index:
- name: Whisper base Luganda
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Sunbird
type: tericlabs
metrics:
- name: Wer
type: wer
value: 40.80100125156446
Whisper base Luganda
This model is a fine-tuned version of openai/whisper-base.en on the Sunbird dataset. It achieves the following results on the evaluation set:
- Loss: 0.6134
- Wer: 40.8010
- Cer: 10.6921
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- training_steps: 4000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
0.3459 | 6.3694 | 1000 | 0.5885 | 45.1815 | 14.4972 |
0.0532 | 12.7389 | 2000 | 0.5441 | 38.6733 | 10.0723 |
0.0108 | 19.1083 | 3000 | 0.6118 | 39.9249 | 10.2789 |
0.0044 | 25.4777 | 4000 | 0.6134 | 40.8010 | 10.6921 |
Framework versions
- Transformers 4.42.0.dev0
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1