whisper-base-en-v1 / README.md
MubarakB's picture
End of training
e6d3d6e verified
metadata
language:
  - nyn
license: apache-2.0
base_model: openai/whisper-base.en
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - tericlabs
metrics:
  - wer
model-index:
  - name: Whisper base Luganda
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Sunbird
          type: tericlabs
        metrics:
          - name: Wer
            type: wer
            value: 40.80100125156446

Visualize in Weights & Biases

Whisper base Luganda

This model is a fine-tuned version of openai/whisper-base.en on the Sunbird dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6134
  • Wer: 40.8010
  • Cer: 10.6921

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
0.3459 6.3694 1000 0.5885 45.1815 14.4972
0.0532 12.7389 2000 0.5441 38.6733 10.0723
0.0108 19.1083 3000 0.6118 39.9249 10.2789
0.0044 25.4777 4000 0.6134 40.8010 10.6921

Framework versions

  • Transformers 4.42.0.dev0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1