MoritzLaurer's picture
MoritzLaurer HF staff
End of training
4958e41 verified
|
raw
history blame
2.31 kB
metadata
library_name: transformers
license: apache-2.0
base_model: answerdotai/ModernBERT-large
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: ModernBERT-large-zeroshot-v2.0-2024-12-28-00-13
    results: []

ModernBERT-large-zeroshot-v2.0-2024-12-28-00-13

This model is a fine-tuned version of answerdotai/ModernBERT-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1803
  • F1 Macro: 0.6624
  • F1 Micro: 0.7304
  • Accuracy Balanced: 0.6979
  • Accuracy: 0.7304
  • Precision Macro: 0.6899
  • Recall Macro: 0.6979
  • Precision Micro: 0.7304
  • Recall Micro: 0.7304

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 9e-06
  • train_batch_size: 16
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.06
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss F1 Macro F1 Micro Accuracy Balanced Accuracy Precision Macro Recall Macro Precision Micro Recall Micro
0.3865 1.0 33915 0.3321 0.8584 0.8704 0.8600 0.8704 0.8569 0.8600 0.8704 0.8704
0.2456 2.0000 67828 0.4069 0.8600 0.8728 0.8590 0.8728 0.8610 0.8590 0.8728 0.8728

Framework versions

  • Transformers 4.48.0.dev0
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0