|
--- |
|
license: mit |
|
language: ja |
|
tags: |
|
- luke |
|
- pytorch |
|
- transformers |
|
- jsts |
|
- stsb |
|
- sentence-similarity |
|
- SentenceSimilarity |
|
|
|
--- |
|
|
|
# このモデルはluke-japanese-baseをファインチューニングして、JSTS(文章の類似度計算)に用いれるようにしたものです。 |
|
このモデルはluke-japanese-baseを |
|
yahoo japan/JGLUEのJSTS( https://github.com/yahoojapan/JGLUE ) |
|
を用いてファインチューニングしたものです。 |
|
|
|
文章の類似度(5が最高値)を計算するタスクに用いることができます。 |
|
|
|
# This model is fine-tuned model for JSTS which is based on luke-japanese-base |
|
|
|
This model is fine-tuned by using yahoo japan JGLUE JSTS dataset. |
|
|
|
You could use this model for calculating sentence-similarity. |
|
|
|
# モデルの精度 accuracy of model |
|
モデルの精度は |
|
|
|
Pearson (ピアソンの積率相関係数) : 0.8971 |
|
|
|
# How to use 使い方 |
|
transformers, sentencepieceをinstallして、以下のコードを実行することで、jsts(文章の類似度計算)タスクを解かせることができます。 |
|
please execute this code. |
|
```python |
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification |
|
import numpy as np |
|
|
|
tokenizer=AutoTokenizer.from_pretrained('Mizuiro-sakura/luke-japanese-base-finetuned-jsts') |
|
model=AutoModelForSequenceClassification.from_pretrained('Mizuiro-sakura/luke-japanese-base-finetuned-jsts') |
|
sentence1='今日は銀座に買い物に出かけた' |
|
sentence2='今日は銀座に服を買いに出かけた' |
|
|
|
token=tokenizer(sentence1,sentence2) |
|
|
|
import torch |
|
tensor_input_ids = torch.tensor(token["input_ids"]) |
|
tensor_attention_masks = torch.tensor(token["attention_mask"]) |
|
|
|
outputs=model(tensor_input_ids.unsqueeze(0), tensor_attention_masks.unsqueeze(0)) |
|
|
|
print(outputs.logits[0][1]*5) |
|
``` |
|
|
|
|
|
# what is Luke? Lukeとは?[1] |
|
LUKE (Language Understanding with Knowledge-based Embeddings) is a new pre-trained contextualized representation of words and entities based on transformer. LUKE treats words and entities in a given text as independent tokens, and outputs contextualized representations of them. LUKE adopts an entity-aware self-attention mechanism that is an extension of the self-attention mechanism of the transformer, and considers the types of tokens (words or entities) when computing attention scores. |
|
|
|
LUKE achieves state-of-the-art results on five popular NLP benchmarks including SQuAD v1.1 (extractive question answering), CoNLL-2003 (named entity recognition), ReCoRD (cloze-style question answering), TACRED (relation classification), and Open Entity (entity typing). luke-japaneseは、単語とエンティティの知識拡張型訓練済み Transformer モデルLUKEの日本語版です。LUKE は単語とエンティティを独立したトークンとして扱い、これらの文脈を考慮した表現を出力します。 |
|
|
|
# Acknowledgments 謝辞 |
|
Lukeの開発者である山田先生とStudio ousiaさんには感謝いたします。 I would like to thank Mr.Yamada @ikuyamada and Studio ousia @StudioOusia. |
|
|
|
# Citation |
|
[1]@inproceedings{yamada2020luke, title={LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention}, author={Ikuya Yamada and Akari Asai and Hiroyuki Shindo and Hideaki Takeda and Yuji Matsumoto}, booktitle={EMNLP}, year={2020} } |
|
|
|
|
|
|
|
|
|
|
|
|