gte-micro-v4
This is a distill of gte-tiny.
Intended purpose
This model is designed for use in semantic-autocomplete (click here for demo).
Usage (Sentence-Transformers) (same as gte-tiny)
Using this model becomes easy when you have sentence-transformers installed:
pip install -U sentence-transformers
Then you can use the model like this:
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('Mihaiii/gte-micro-v4')
embeddings = model.encode(sentences)
print(embeddings)
Usage (HuggingFace Transformers) (same as gte-tiny)
Without sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('Mihaiii/gte-micro-v4')
model = AutoModel.from_pretrained('Mihaiii/gte-micro-v4')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
Limitation (same as gte-small)
This model exclusively caters to English texts, and any lengthy texts will be truncated to a maximum of 512 tokens.
- Downloads last month
- 257
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Spaces using Mihaiii/gte-micro-v4 2
Evaluation results
- accuracy on MTEB AmazonCounterfactualClassification (en)test set self-reported71.836
- ap on MTEB AmazonCounterfactualClassification (en)test set self-reported34.436
- f1 on MTEB AmazonCounterfactualClassification (en)test set self-reported65.828
- accuracy on MTEB AmazonPolarityClassificationtest set self-reported80.040
- ap on MTEB AmazonPolarityClassificationtest set self-reported74.451
- f1 on MTEB AmazonPolarityClassificationtest set self-reported79.980
- accuracy on MTEB AmazonReviewsClassification (en)test set self-reported39.754
- f1 on MTEB AmazonReviewsClassification (en)test set self-reported39.423
- v_measure on MTEB ArxivClusteringP2Ptest set self-reported42.859
- v_measure on MTEB ArxivClusteringS2Stest set self-reported32.475