Edit model card

SongComposer

SongComposer is a language large model (LLM) based on InternLM2 for lyric and melody composition in song generation.

We release SongComposer series in two versions:

  • SongComposer_pretrain: The pretrained SongComposer with InternLM2 as the initialization of the LLM, gains basic knowledge of lyric and melody.
  • SongComposer_sft: The finetuned SongComposer for instruction-following song generation including lyric to melody, melody to lyric, song continuation, text to song.

Import from Transformers

To load the SongComposer_pretrain model using Transformers, use the following code:

from transformers import AutoTokenizer, AutoModel
ckpt_path = "Mar2Ding/songcomposer_pretrain"
tokenizer = AutoTokenizer.from_pretrained(ckpt_path, trust_remote_code=True)
model = AutoModel.from_pretrained(ckpt_path, trust_remote_code=True).cuda().half()
prompt = '<bop> Total 7 lines. The first line:可,<D4>,<137>,<79>|惜,<D#4>,<137>,<79>|这,<F4>,<137>,<88>|是,<F4>,<121>,<79>|属,<F4>,<121>,<79>|于,<D#4>,<214>,<88>|你,<D#4>,<141>,<79>|的,<D4>,<130>,<79>|风,<C4>,<151>,<79>|景,<A#3> <F3>,<181><137>,<79>\n'
model.inference_pretrain(prompt, tokenizer)

通过 Transformers 加载

通过以下的代码加载 SongComposer_pretrain 模型

from transformers import AutoTokenizer, AutoModel
ckpt_path = "Mar2Ding/songcomposer_pretrain"
tokenizer = AutoTokenizer.from_pretrained(ckpt_path, trust_remote_code=True)
model = AutoModel.from_pretrained(ckpt_path, trust_remote_code=True).cuda().half()
prompt = '<bop> Total 7 lines. The first line:可,<D4>,<137>,<79>|惜,<D#4>,<137>,<79>|这,<F4>,<137>,<88>|是,<F4>,<121>,<79>|属,<F4>,<121>,<79>|于,<D#4>,<214>,<88>|你,<D#4>,<141>,<79>|的,<D4>,<130>,<79>|风,<C4>,<151>,<79>|景,<A#3> <F3>,<181><137>,<79>\n'
model.inference_pretrain(prompt, tokenizer)

Open Source License

The code is licensed under Apache-2.0, while model weights are fully open for academic research and also allow free commercial usage.

Downloads last month
74
Inference Examples
Inference API (serverless) does not yet support model repos that contain custom code.