mobilevit-xx-small-finetuned-eurosat

This model is a fine-tuned version of apple/mobilevit-xx-small on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 7.3961
  • Accuracy: 0.09

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.003
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.2991 1.0 100 2.2896 0.16
2.3041 2.0 200 2.4578 0.12
2.2833 3.0 300 2.3022 0.12
2.2755 4.0 400 2.4039 0.17
2.3063 5.0 500 2.5689 0.1
2.3247 6.0 600 2.5307 0.05
2.2867 7.0 700 4.1296 0.08
2.2696 8.0 800 3.0869 0.07
2.2688 9.0 900 3.6086 0.08
2.2616 10.0 1000 6.5422 0.13
2.3896 11.0 1100 3.2715 0.11
2.3264 12.0 1200 2.6975 0.08
2.2603 13.0 1300 2.4012 0.17
2.2845 14.0 1400 3.0856 0.19
2.2813 15.0 1500 3.2556 0.17
2.2232 16.0 1600 3.5357 0.18
2.2332 17.0 1700 3.8758 0.11
2.3568 18.0 1800 3.0675 0.13
2.2627 19.0 1900 3.1308 0.16
2.2528 20.0 2000 2.7741 0.1
2.2039 21.0 2100 2.7257 0.14
2.389 22.0 2200 2.6245 0.08
2.31 23.0 2300 3.1870 0.1
2.1471 24.0 2400 2.8313 0.02
2.1658 25.0 2500 2.9323 0.11
2.0946 26.0 2600 2.8372 0.14
2.0924 27.0 2700 2.7403 0.16
2.2634 28.0 2800 2.8991 0.14
2.1897 29.0 2900 2.8778 0.13
2.144 30.0 3000 2.6043 0.15
2.108 31.0 3100 2.9231 0.1
2.0792 32.0 3200 2.8421 0.12
2.1552 33.0 3300 2.8106 0.12
1.9701 34.0 3400 2.8279 0.11
1.9291 35.0 3500 3.0954 0.2
2.0341 36.0 3600 3.8294 0.14
1.9165 37.0 3700 4.5289 0.11
1.9736 38.0 3800 3.0090 0.14
1.9811 39.0 3900 5.3900 0.14
1.9522 40.0 4000 3.5710 0.08
2.047 41.0 4100 3.4724 0.13
1.9999 42.0 4200 7.2604 0.11
1.9869 43.0 4300 7.9946 0.06
1.9428 44.0 4400 6.1566 0.08
1.7922 45.0 4500 4.9919 0.03
1.9047 46.0 4600 7.1934 0.13
1.9419 47.0 4700 4.3265 0.08
1.7765 48.0 4800 4.6136 0.12
1.7962 49.0 4900 13.4765 0.14
2.0226 50.0 5000 8.1225 0.08
2.1393 51.0 5100 7.7941 0.17
1.8256 52.0 5200 5.4134 0.12
1.9116 53.0 5300 6.1129 0.08
2.1156 54.0 5400 4.1454 0.14
1.7501 55.0 5500 6.2134 0.09
1.8722 56.0 5600 6.4985 0.12
1.9432 57.0 5700 5.2718 0.12
1.7713 58.0 5800 12.3311 0.08
1.6786 59.0 5900 7.1599 0.07
1.5969 60.0 6000 6.0869 0.08
1.8203 61.0 6100 8.8250 0.14
1.7148 62.0 6200 19.0942 0.11
1.6627 63.0 6300 12.4329 0.16
1.7134 64.0 6400 5.5367 0.11
1.8841 65.0 6500 9.1239 0.11
1.6822 66.0 6600 9.4719 0.11
1.8892 67.0 6700 5.6084 0.09
1.72 68.0 6800 8.7854 0.12
1.8751 69.0 6900 7.5571 0.11
1.3783 70.0 7000 11.6321 0.12
1.6403 71.0 7100 7.5354 0.15
2.087 72.0 7200 13.7248 0.11
1.6402 73.0 7300 5.4883 0.12
1.8016 74.0 7400 7.8351 0.13
1.4308 75.0 7500 4.6966 0.13
1.6833 76.0 7600 5.9138 0.12
1.5684 77.0 7700 11.9864 0.15
1.6765 78.0 7800 12.2146 0.1
1.7482 79.0 7900 4.6041 0.12
1.7836 80.0 8000 9.7217 0.13
1.5195 81.0 8100 7.5132 0.12
1.4384 82.0 8200 6.6091 0.13
1.5538 83.0 8300 7.0786 0.13
1.5705 84.0 8400 12.5851 0.14
1.7255 85.0 8500 9.9331 0.11
1.6063 86.0 8600 11.3630 0.14
1.5201 87.0 8700 20.8011 0.08
1.3734 88.0 8800 5.2354 0.09
1.5931 89.0 8900 6.5090 0.1
1.5562 90.0 9000 11.8341 0.1
1.576 91.0 9100 6.9521 0.11
1.542 92.0 9200 5.4470 0.11
1.4968 93.0 9300 11.3896 0.08
1.5031 94.0 9400 11.9717 0.09
1.797 95.0 9500 5.6596 0.15
1.5389 96.0 9600 5.3947 0.15
1.6494 97.0 9700 12.2707 0.09
1.73 98.0 9800 7.7482 0.09
1.6781 99.0 9900 8.2178 0.09
1.6353 100.0 10000 7.3961 0.09

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
4
Safetensors
Model size
958k params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for Manuappu5670/mobilevit-xx-small-finetuned-eurosat

Finetuned
(10)
this model