Developed by: Mahmoud Ibrahim
How to use :
! pip install transformers bitsandbytes
from transformers import AutoTokenizer, AutoModelForCausalLM
from IPython.display import Markdown
import textwrap
# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("MahmoudIbrahim/Mistral_12b_Arabic")
model = AutoModelForCausalLM.from_pretrained("MahmoudIbrahim/Mistral_12b_Arabic",load_in_4bit =True)
alpaca_prompt = """ููู
ุง ููู ุชุนููู
ุงุช ุชุตู ู
ูู
ุฉุ ุฅูู ุฌุงูุจ ู
ุฏุฎู ูููุฑ ุณูุงูุงู ุฅุถุงููุงู. ุงูุชุจ ุงุณุชุฌุงุจุฉ ุชููู
ู ุงูุทูุจ ุจุดูู ู
ูุงุณุจ.
### ุงูุชุนููู
ุงุช:
{}
### ุงูุงุณุชุฌุงุจุฉ:
{}"""
# Format the prompt with instruction and an empty output placeholder
formatted_prompt = alpaca_prompt.format(
"ููู ูู
ูู ููุญููู
ุฉ ุงูู
ุตุฑูุฉ ูุงูู
ุฌุชู
ุน ููู ุฃู ูุนุฒุฒูุง ู
ู ูุฏุฑุฉ ุงูุจูุงุฏ ุนูู ุชุญููู ุงูุชูู
ูุฉ ุงูู
ุณุชุฏุงู
ุฉุ " , # instruction
"" # Leave output blank for generation
)
# Tokenize the formatted string directly
input_ids = tokenizer.encode(formatted_prompt, return_tensors="pt") # Use 'cuda' if you want to run on GPU
def to_markdown(text):
text = text.replace('โข','*')
return Markdown(textwrap.indent(text, '>', predicate=lambda _: True))
# Generate text
output = model.generate(
input_ids,
max_length=128, # Adjust max length as needed
num_return_sequences=1, # Number of generated responses
no_repeat_ngram_size=2, # Prevent repetition
top_k=50, # Filter to top-k tokens
top_p=0.9, # Use nucleus sampling
temperature=0.7 , # Control creativity level
)
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
to_markdown(generated_text)
The model response :
- Downloads last month
- 33
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for MahmoudIbrahim/Mistral_Nemo_Arabic
Base model
unsloth/Mistral-Nemo-Base-2407-bnb-4bit