LH0521's picture
Update README.md
056ca5e verified
metadata
tags:
  - mteb
model-index:
  - name: Zhihui_LLM_Embedding
    results:
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/CmedqaRetrieval
          name: MTEB CmedqaRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 29.012
          - type: map_at_10
            value: 41.998000000000005
          - type: map_at_100
            value: 43.821
          - type: map_at_1000
            value: 43.924
          - type: map_at_3
            value: 37.804
          - type: map_at_5
            value: 40.025
          - type: mrr_at_1
            value: 43.536
          - type: mrr_at_10
            value: 51.413
          - type: mrr_at_100
            value: 52.329
          - type: mrr_at_1000
            value: 52.366
          - type: mrr_at_3
            value: 49.058
          - type: mrr_at_5
            value: 50.291
          - type: ndcg_at_1
            value: 43.536
          - type: ndcg_at_10
            value: 48.693
          - type: ndcg_at_100
            value: 55.644000000000005
          - type: ndcg_at_1000
            value: 57.354000000000006
          - type: ndcg_at_3
            value: 43.627
          - type: ndcg_at_5
            value: 45.462
          - type: precision_at_1
            value: 43.536
          - type: precision_at_10
            value: 10.552999999999999
          - type: precision_at_100
            value: 1.624
          - type: precision_at_1000
            value: 0.184
          - type: precision_at_3
            value: 24.314
          - type: precision_at_5
            value: 17.299
          - type: recall_at_1
            value: 29.012
          - type: recall_at_10
            value: 59.123000000000005
          - type: recall_at_100
            value: 87.783
          - type: recall_at_1000
            value: 99.078
          - type: recall_at_3
            value: 43.474000000000004
          - type: recall_at_5
            value: 49.557
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/CovidRetrieval
          name: MTEB CovidRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 73.235
          - type: map_at_10
            value: 80.87100000000001
          - type: map_at_100
            value: 81.10300000000001
          - type: map_at_1000
            value: 81.105
          - type: map_at_3
            value: 79.171
          - type: map_at_5
            value: 80.163
          - type: mrr_at_1
            value: 73.235
          - type: mrr_at_10
            value: 80.80000000000001
          - type: mrr_at_100
            value: 81.024
          - type: mrr_at_1000
            value: 81.026
          - type: mrr_at_3
            value: 79.15299999999999
          - type: mrr_at_5
            value: 80.133
          - type: ndcg_at_1
            value: 73.34
          - type: ndcg_at_10
            value: 84.387
          - type: ndcg_at_100
            value: 85.348
          - type: ndcg_at_1000
            value: 85.411
          - type: ndcg_at_3
            value: 80.97
          - type: ndcg_at_5
            value: 82.757
          - type: precision_at_1
            value: 73.34
          - type: precision_at_10
            value: 9.631
          - type: precision_at_100
            value: 1.005
          - type: precision_at_1000
            value: 0.101
          - type: precision_at_3
            value: 28.837000000000003
          - type: precision_at_5
            value: 18.209
          - type: recall_at_1
            value: 73.235
          - type: recall_at_10
            value: 95.311
          - type: recall_at_100
            value: 99.473
          - type: recall_at_1000
            value: 100
          - type: recall_at_3
            value: 86.091
          - type: recall_at_5
            value: 90.411
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/DuRetrieval
          name: MTEB DuRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 28.059
          - type: map_at_10
            value: 85.309
          - type: map_at_100
            value: 87.926
          - type: map_at_1000
            value: 87.945
          - type: map_at_3
            value: 59.862
          - type: map_at_5
            value: 75.345
          - type: mrr_at_1
            value: 93.30000000000001
          - type: mrr_at_10
            value: 95.624
          - type: mrr_at_100
            value: 95.647
          - type: mrr_at_1000
            value: 95.649
          - type: mrr_at_3
            value: 95.42500000000001
          - type: mrr_at_5
            value: 95.572
          - type: ndcg_at_1
            value: 93.30000000000001
          - type: ndcg_at_10
            value: 91.338
          - type: ndcg_at_100
            value: 93.38
          - type: ndcg_at_1000
            value: 93.57
          - type: ndcg_at_3
            value: 90.512
          - type: ndcg_at_5
            value: 89.617
          - type: precision_at_1
            value: 93.30000000000001
          - type: precision_at_10
            value: 43.169999999999995
          - type: precision_at_100
            value: 4.868
          - type: precision_at_1000
            value: 0.49100000000000005
          - type: precision_at_3
            value: 80.7
          - type: precision_at_5
            value: 68.12
          - type: recall_at_1
            value: 28.059
          - type: recall_at_10
            value: 91.949
          - type: recall_at_100
            value: 98.777
          - type: recall_at_1000
            value: 99.816
          - type: recall_at_3
            value: 61.699000000000005
          - type: recall_at_5
            value: 79.134
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/EcomRetrieval
          name: MTEB EcomRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 57.599999999999994
          - type: map_at_10
            value: 67.169
          - type: map_at_100
            value: 67.654
          - type: map_at_1000
            value: 67.663
          - type: map_at_3
            value: 64.833
          - type: map_at_5
            value: 66.298
          - type: mrr_at_1
            value: 57.599999999999994
          - type: mrr_at_10
            value: 67.169
          - type: mrr_at_100
            value: 67.654
          - type: mrr_at_1000
            value: 67.663
          - type: mrr_at_3
            value: 64.833
          - type: mrr_at_5
            value: 66.298
          - type: ndcg_at_1
            value: 57.599999999999994
          - type: ndcg_at_10
            value: 71.95899999999999
          - type: ndcg_at_100
            value: 74.092
          - type: ndcg_at_1000
            value: 74.323
          - type: ndcg_at_3
            value: 67.212
          - type: ndcg_at_5
            value: 69.892
          - type: precision_at_1
            value: 57.599999999999994
          - type: precision_at_10
            value: 8.7
          - type: precision_at_100
            value: 0.9650000000000001
          - type: precision_at_1000
            value: 0.098
          - type: precision_at_3
            value: 24.7
          - type: precision_at_5
            value: 16.14
          - type: recall_at_1
            value: 57.599999999999994
          - type: recall_at_10
            value: 87
          - type: recall_at_100
            value: 96.5
          - type: recall_at_1000
            value: 98.3
          - type: recall_at_3
            value: 74.1
          - type: recall_at_5
            value: 80.7
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/MMarcoRetrieval
          name: MTEB MMarcoRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 72.858
          - type: map_at_10
            value: 81.559
          - type: map_at_100
            value: 81.808
          - type: map_at_1000
            value: 81.813
          - type: map_at_3
            value: 80.018
          - type: map_at_5
            value: 81.04299999999999
          - type: mrr_at_1
            value: 75.27199999999999
          - type: mrr_at_10
            value: 81.989
          - type: mrr_at_100
            value: 82.202
          - type: mrr_at_1000
            value: 82.206
          - type: mrr_at_3
            value: 80.647
          - type: mrr_at_5
            value: 81.53399999999999
          - type: ndcg_at_1
            value: 75.27199999999999
          - type: ndcg_at_10
            value: 84.772
          - type: ndcg_at_100
            value: 85.79599999999999
          - type: ndcg_at_1000
            value: 85.925
          - type: ndcg_at_3
            value: 81.884
          - type: ndcg_at_5
            value: 83.60300000000001
          - type: precision_at_1
            value: 75.27199999999999
          - type: precision_at_10
            value: 10.017
          - type: precision_at_100
            value: 1.051
          - type: precision_at_1000
            value: 0.106
          - type: precision_at_3
            value: 30.578
          - type: precision_at_5
            value: 19.261
          - type: recall_at_1
            value: 72.858
          - type: recall_at_10
            value: 94.197
          - type: recall_at_100
            value: 98.634
          - type: recall_at_1000
            value: 99.63499999999999
          - type: recall_at_3
            value: 86.6
          - type: recall_at_5
            value: 90.692
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/MedicalRetrieval
          name: MTEB MedicalRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 56.2
          - type: map_at_10
            value: 62.198
          - type: map_at_100
            value: 62.794000000000004
          - type: map_at_1000
            value: 62.829
          - type: map_at_3
            value: 60.699999999999996
          - type: map_at_5
            value: 61.660000000000004
          - type: mrr_at_1
            value: 56.49999999999999
          - type: mrr_at_10
            value: 62.348000000000006
          - type: mrr_at_100
            value: 62.944
          - type: mrr_at_1000
            value: 62.979
          - type: mrr_at_3
            value: 60.85
          - type: mrr_at_5
            value: 61.809999999999995
          - type: ndcg_at_1
            value: 56.2
          - type: ndcg_at_10
            value: 65.19200000000001
          - type: ndcg_at_100
            value: 68.341
          - type: ndcg_at_1000
            value: 69.392
          - type: ndcg_at_3
            value: 62.163999999999994
          - type: ndcg_at_5
            value: 63.894
          - type: precision_at_1
            value: 56.2
          - type: precision_at_10
            value: 7.46
          - type: precision_at_100
            value: 0.899
          - type: precision_at_1000
            value: 0.098
          - type: precision_at_3
            value: 22.133
          - type: precision_at_5
            value: 14.12
          - type: recall_at_1
            value: 56.2
          - type: recall_at_10
            value: 74.6
          - type: recall_at_100
            value: 89.9
          - type: recall_at_1000
            value: 98.4
          - type: recall_at_3
            value: 66.4
          - type: recall_at_5
            value: 70.6
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/T2Retrieval
          name: MTEB T2Retrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 28.79
          - type: map_at_10
            value: 81.687
          - type: map_at_100
            value: 85.19200000000001
          - type: map_at_1000
            value: 85.232
          - type: map_at_3
            value: 57.145999999999994
          - type: map_at_5
            value: 70.491
          - type: mrr_at_1
            value: 92.21000000000001
          - type: mrr_at_10
            value: 94.303
          - type: mrr_at_100
            value: 94.368
          - type: mrr_at_1000
            value: 94.37
          - type: mrr_at_3
            value: 93.94500000000001
          - type: mrr_at_5
            value: 94.175
          - type: ndcg_at_1
            value: 92.21000000000001
          - type: ndcg_at_10
            value: 88.29599999999999
          - type: ndcg_at_100
            value: 91.268
          - type: ndcg_at_1000
            value: 91.645
          - type: ndcg_at_3
            value: 89.031
          - type: ndcg_at_5
            value: 88.075
          - type: precision_at_1
            value: 92.21000000000001
          - type: precision_at_10
            value: 43.775
          - type: precision_at_100
            value: 5.097
          - type: precision_at_1000
            value: 0.518
          - type: precision_at_3
            value: 77.708
          - type: precision_at_5
            value: 65.473
          - type: recall_at_1
            value: 28.79
          - type: recall_at_10
            value: 87.457
          - type: recall_at_100
            value: 97.21499999999999
          - type: recall_at_1000
            value: 99.14
          - type: recall_at_3
            value: 58.606
          - type: recall_at_5
            value: 73.52300000000001
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/VideoRetrieval
          name: MTEB VideoRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 67
          - type: map_at_10
            value: 75.44999999999999
          - type: map_at_100
            value: 75.771
          - type: map_at_1000
            value: 75.776
          - type: map_at_3
            value: 73.867
          - type: map_at_5
            value: 74.837
          - type: mrr_at_1
            value: 67
          - type: mrr_at_10
            value: 75.44999999999999
          - type: mrr_at_100
            value: 75.771
          - type: mrr_at_1000
            value: 75.776
          - type: mrr_at_3
            value: 73.867
          - type: mrr_at_5
            value: 74.837
          - type: ndcg_at_1
            value: 67
          - type: ndcg_at_10
            value: 79.313
          - type: ndcg_at_100
            value: 80.894
          - type: ndcg_at_1000
            value: 80.989
          - type: ndcg_at_3
            value: 76.08500000000001
          - type: ndcg_at_5
            value: 77.845
          - type: precision_at_1
            value: 67
          - type: precision_at_10
            value: 9.13
          - type: precision_at_100
            value: 0.987
          - type: precision_at_1000
            value: 0.099
          - type: precision_at_3
            value: 27.500000000000004
          - type: precision_at_5
            value: 17.36
          - type: recall_at_1
            value: 67
          - type: recall_at_10
            value: 91.3
          - type: recall_at_100
            value: 98.7
          - type: recall_at_1000
            value: 99.4
          - type: recall_at_3
            value: 82.5
          - type: recall_at_5
            value: 86.8
license: cc-by-nc-4.0
language:
  - zh
library_name: transformers

Zhihui_LLM_Embedding

Model Introduction

Zhihui_LLM_Embedding is an embedding model specifically designed to enhance Chinese text retrieval capabilities. It is built on a 7B LLM and enhanced bidirectional attention mechanism to improved contextual understanding. The model is trained on an extensive corpus from various fields within an extremely large batch. Zhihui_LLM_Embedding excels in retrieval tasks, ranking 1st position on the C-MTEB leaderboard with a leading performance score of 76.74 as of June 25, 2024.

Optimization points

  • Data source enhancement: Leverages the knowledge of LLMs through three types of distillation methods.(GPT3.5 & GPT4)
    • Data Refinement: LLM scores candidate positive passages to select the most relevant examples.
    • Query Rewriting: LLM generates queries that can be answered by positive documents but are unrelated to negatives, thus enhancing the query's quality and diversity.
    • Query Expansion: Queries are expanded based on multiple topics for long documents.
  • Negative example mining: Use multiple methods and different ranges of negative selection to mine hard negative examples.
  • Improved Contrastive Loss: Design a novel InfoNCE loss assigns higher weights to the harder negative examples to improve the fine-grained feature representation of the model.
  • Bidirectional-attention: Remove the causal attention of LLMs during contrastive training of decoder-only LLM to produce rich contextualized representations.
  • Training efficiency: Using Gradient Cache to scale contrastive learning batches beyond GPU memory constraints allows the model to learn from more challenging negative examples.
  • Others: Dataset-Homogenous Batching、cross-batch negative sampling

Model Details

Usage

Requirements
transformers>=4.40.2
flash_attn>=2.5.8
sentence-transformers>=2.7.0
How to use

Here is an example of how to encode queries and passages using Huggingface-transformer and Sentence-transformer.

Usage (HuggingFace Transformers)
import torch
import torch.nn.functional as F

from torch import Tensor
from transformers import AutoTokenizer, AutoModel


def last_token_pool(last_hidden_states: Tensor, attention_mask: Tensor) -> Tensor:
    left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0])
    if left_padding:
        return last_hidden_states[:, -1]
    else:
        sequence_lengths = attention_mask.sum(dim=1) - 1
        batch_size = last_hidden_states.shape[0]
        return last_hidden_states[torch.arange(batch_size, device=last_hidden_states.device), sequence_lengths]


def get_detailed_instruct(task_description: str, query: str) -> str:
    return f'Instruct: {task_description}\nQuery: {query}'



task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = [
    get_detailed_instruct(task, "国家法定节假日共多少天"),
    get_detailed_instruct(task, "如何查看好友申请")
]

documents = [
    "一年国家法定节假日为11天。根据公布的国家法定节假日调整方案,调整的主要内容包括:元旦放假1天不变;春节放假3天,放假时间为农历正月初一、初二、初三;“五一”国际劳动节1天不变;“十一”国庆节放假3天;清明节、端午节、中秋节增设为国家法定节假日,各放假1天(农历节日如遇闰月,以第一个月为休假日)。3、允许周末上移下错,与法定节假日形成连休。",
    "这个直接去我的QQ中心不就好了么那里可以查到 我的好友单向好友好友恢复、 以及好友申请 啊可以是你加别人的 或 别人加你的都可以查得到QQ空间里 这个没注意 要有的话也会在你进空间的时候会提示你的QQ 空间里 上面消息 就可以看见了!望采纳!谢谢这个直接去我的QQ中心不就好了么那里可以查到 我的好友单向好友好友恢复、 以及好友申请 啊可以是你加别人的 或 别人加你的都可以查得到",
]
input_texts = queries + documents

tokenizer = AutoTokenizer.from_pretrained('Lenovo-Zhihui/Zhihui_LLM_Embedding', trust_remote_code=True)
model = AutoModel.from_pretrained('Lenovo-Zhihui/Zhihui_LLM_Embedding', trust_remote_code=True)

max_length = 512

# Tokenize the input texts
batch_dict = tokenizer(input_texts, max_length=max_length, padding=True, truncation=True, return_tensors='pt')
outputs = model(**batch_dict)
embeddings = last_token_pool(outputs.last_hidden_state, batch_dict['attention_mask'])

# normalize embeddings
embeddings = F.normalize(embeddings, p=2, dim=1)
scores = (embeddings[:2] @ embeddings[2:].T)
print(scores.tolist())
Usage (Sentence-Transformers)
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("Lenovo-Zhihui/Zhihui_LLM_Embedding", trust_remote_code=True)
model.max_seq_length = 512
# 数据来源DuRetrieval https://huggingface.co./datasets/C-MTEB/DuRetrieval
queries = [
    "国家法定节假日共多少天",
    "如何查看好友申请",
]
documents = [
    "一年国家法定节假日为11天。根据公布的国家法定节假日调整方案,调整的主要内容包括:元旦放假1天不变;春节放假3天,放假时间为农历正月初一、初二、初三;“五一”国际劳动节1天不变;“十一”国庆节放假3天;清明节、端午节、中秋节增设为国家法定节假日,各放假1天(农历节日如遇闰月,以第一个月为休假日)。3、允许周末上移下错,与法定节假日形成连休。",
    "这个直接去我的QQ中心不就好了么那里可以查到 我的好友单向好友好友恢复、 以及好友申请 啊可以是你加别人的 或 别人加你的都可以查得到QQ空间里 这个没注意 要有的话也会在你进空间的时候会提示你的QQ 空间里 上面消息 就可以看见了!望采纳!谢谢这个直接去我的QQ中心不就好了么那里可以查到 我的好友单向好友好友恢复、 以及好友申请 啊可以是你加别人的 或 别人加你的都可以查得到",
]

query_embeddings = model.encode(queries, prompt_name="query", normalize_embeddings=True)
document_embeddings = model.encode(documents, normalize_embeddings=True)

scores = (query_embeddings @ document_embeddings.T)
print(scores.tolist())

Reproduce our results(C-MTEB):

Check out scripts/eval_mteb.py to reproduce evaluation results on C-MTEB benchmark.

Model T2Retrieval MMarcoRetrieval DuRetrieval CovidRetrieval CmedqaRetrieval EcomRetrieval MedicalRetrieval VideoRetrieval Avg
Zhihui_LLM_Embedding 88.30 84.77 91.34 84.39 48.69 71.96 65.19 79.31 76.74
zpoint_large_embedding_zh 83.81 82.38 89.23 89.14 47.16 70.74 68.14 80.26 76.36
gte-Qwen2-7B-instruct 87.73 85.16 87.44 83.65 48.69 71.15 65.59 78.84 76.03
360Zhinao-search 87.12 83.32 87.57 85.02 46.73 68.9 63.69 78.09 75.06
AGE_Hybrid 86.88 80.65 89.28 83.66 47.26 69.28 65.94 76.79 74.97