Mengzi-BERT base model (Chinese)
Pretrained model on 300G Chinese corpus. Masked language modeling(MLM), part-of-speech(POS) tagging and sentence order prediction(SOP) are used as training task.
Mengzi: A lightweight yet Powerful Chinese Pre-trained Language Model
Usage
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained("Langboat/mengzi-bert-base")
model = BertModel.from_pretrained("Langboat/mengzi-bert-base")
Scores on nine chinese tasks (without any data augmentation)
Model | AFQMC | TNEWS | IFLYTEK | CMNLI | WSC | CSL | CMRC2018 | C3 | CHID |
---|---|---|---|---|---|---|---|---|---|
RoBERTa-wwm-ext | 74.30 | 57.51 | 60.80 | 80.70 | 67.20 | 80.67 | 77.59 | 67.06 | 83.78 |
Mengzi-BERT-base | 74.58 | 57.97 | 60.68 | 82.12 | 87.50 | 85.40 | 78.54 | 71.70 | 84.16 |
RoBERTa-wwm-ext scores are from CLUE baseline
Citation
If you find the technical report or resource is useful, please cite the following technical report in your paper.
@misc{zhang2021mengzi,
title={Mengzi: Towards Lightweight yet Ingenious Pre-trained Models for Chinese},
author={Zhuosheng Zhang and Hanqing Zhang and Keming Chen and Yuhang Guo and Jingyun Hua and Yulong Wang and Ming Zhou},
year={2021},
eprint={2110.06696},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 190
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.