distilbert-base-uncased-wandb-week-3-complaints-classifier-1500
This model is a fine-tuned version of distilbert-base-uncased on the consumer-finance-complaints dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1500
- num_epochs: 2
- mixed_precision_training: Native AMP
Training results
Framework versions
- Transformers 4.20.1
- Pytorch 1.11.0+cu102
- Datasets 2.3.2
- Tokenizers 0.12.1
- Downloads last month
- 13
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.