File size: 6,208 Bytes
838919d 02bd618 838919d 02bd618 838919d 02bd618 838919d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
---
language: sv
---
# Swedish BERT Models
The National Library of Sweden / KBLab releases three pretrained language models based on BERT and ALBERT. The models are trained on approximately 15-20GB of text (200M sentences, 3000M tokens) from various sources (books, news, government publications, swedish wikipedia and internet forums) aiming to provide a representative BERT model for Swedish text. A more complete description will be published later on.
The following three models are currently available:
- **bert-base-swedish-cased** (*v1*) - A BERT trained with the same hyperparameters as first published by Google.
- **bert-base-swedish-cased-ner** (*experimental*) - a BERT fine-tuned for NER using SUC 3.0.
- **albert-base-swedish-cased-alpha** (*alpha*) - A first attempt at an ALBERT for Swedish.
All models are cased and trained with whole word masking.
## Files
| **name** | **files** |
|---------------------------------|-----------|
| bert-base-swedish-cased | [config](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased/config.json), [vocab](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased/vocab.txt), [pytorch_model.bin](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased/pytorch_model.bin) |
| bert-base-swedish-cased-ner | [config](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased-ner/config.json), [vocab](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased-ner/vocab.txt) [pytorch_model.bin](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased-ner/pytorch_model.bin) |
| albert-base-swedish-cased-alpha | [config](https://s3.amazonaws.com/models.huggingface.co/bert/KB/albert-base-swedish-cased-alpha/config.json), [sentencepiece model](https://s3.amazonaws.com/models.huggingface.co/bert/KB/albert-base-swedish-cased-alpha/spiece.model), [pytorch_model.bin](https://s3.amazonaws.com/models.huggingface.co/bert/KB/albert-base-swedish-cased-alpha/pytorch_model.bin) |
TensorFlow model weights will be released soon.
## Usage requirements / installation instructions
The examples below require Huggingface Transformers 2.4.1 and Pytorch 1.3.1 or greater. For Transformers<2.4.0 the tokenizer must be instantiated manually and the `do_lower_case` flag parameter set to `False` and `keep_accents` to `True` (for ALBERT).
To create an environment where the examples can be run, run the following in an terminal on your OS of choice.
```
# git clone https://github.com/Kungbib/swedish-bert-models
# cd swedish-bert-models
# python3 -m venv venv
# source venv/bin/activate
# pip install --upgrade pip
# pip install -r requirements.txt
```
### BERT Base Swedish
A standard BERT base for Swedish trained on a variety of sources. Vocabulary size is ~50k. Using Huggingface Transformers the model can be loaded in Python as follows:
```python
from transformers import AutoModel,AutoTokenizer
tok = AutoTokenizer.from_pretrained('KBLab/bert-base-swedish-cased')
model = AutoModel.from_pretrained('KBLab/bert-base-swedish-cased')
```
### BERT base fine-tuned for Swedish NER
This model is fine-tuned on the SUC 3.0 dataset. Using the Huggingface pipeline the model can be easily instantiated. For Transformer<2.4.1 it seems the tokenizer must be loaded separately to disable lower-casing of input strings:
```python
from transformers import pipeline
nlp = pipeline('ner', model='KBLab/bert-base-swedish-cased-ner', tokenizer='KBLab/bert-base-swedish-cased-ner')
nlp('Idag släpper KB tre språkmodeller.')
```
Running the Python code above should produce in something like the result below. Entity types used are `TME` for time, `PRS` for personal names, `LOC` for locations, `EVN` for events and `ORG` for organisations. These labels are subject to change.
```python
[ { 'word': 'Idag', 'score': 0.9998126029968262, 'entity': 'TME' },
{ 'word': 'KB', 'score': 0.9814832210540771, 'entity': 'ORG' } ]
```
The BERT tokenizer often splits words into multiple tokens, with the subparts starting with `##`, for example the string `Engelbert kör Volvo till Herrängens fotbollsklubb` gets tokenized as `Engel ##bert kör Volvo till Herr ##ängens fotbolls ##klubb`. To glue parts back together one can use something like this:
```python
text = 'Engelbert tar Volvon till Tele2 Arena för att titta på Djurgården IF ' +\
'som spelar fotboll i VM klockan två på kvällen.'
l = []
for token in nlp(text):
if token['word'].startswith('##'):
l[-1]['word'] += token['word'][2:]
else:
l += [ token ]
print(l)
```
Which should result in the following (though less cleanly formatted):
```python
[ { 'word': 'Engelbert', 'score': 0.99..., 'entity': 'PRS'},
{ 'word': 'Volvon', 'score': 0.99..., 'entity': 'OBJ'},
{ 'word': 'Tele2', 'score': 0.99..., 'entity': 'LOC'},
{ 'word': 'Arena', 'score': 0.99..., 'entity': 'LOC'},
{ 'word': 'Djurgården', 'score': 0.99..., 'entity': 'ORG'},
{ 'word': 'IF', 'score': 0.99..., 'entity': 'ORG'},
{ 'word': 'VM', 'score': 0.99..., 'entity': 'EVN'},
{ 'word': 'klockan', 'score': 0.99..., 'entity': 'TME'},
{ 'word': 'två', 'score': 0.99..., 'entity': 'TME'},
{ 'word': 'på', 'score': 0.99..., 'entity': 'TME'},
{ 'word': 'kvällen', 'score': 0.54..., 'entity': 'TME'} ]
```
### ALBERT base
The easiest way to do this is, again, using Huggingface Transformers:
```python
from transformers import AutoModel,AutoTokenizer
tok = AutoTokenizer.from_pretrained('KBLab/albert-base-swedish-cased-alpha'),
model = AutoModel.from_pretrained('KBLab/albert-base-swedish-cased-alpha')
```
## Acknowledgements ❤️
- Resources from Stockholms University, Umeå University and Swedish Language Bank at Gothenburg University were used when fine-tuning BERT for NER.
- Model pretraining was made partly in-house at the KBLab and partly (for material without active copyright) with the support of Cloud TPUs from Google's TensorFlow Research Cloud (TFRC).
- Models are hosted on S3 by Huggingface 🤗
|