KB TunesRX commited on
Commit
02bd618
·
1 Parent(s): d36bda7

Update README.md (#1)

Browse files

- Update README.md (60a7a10df59d5f85d85315ca298723aeb52af678)


Co-authored-by: Gonçalo Antunes <[email protected]>

Files changed (1) hide show
  1. README.md +5 -5
README.md CHANGED
@@ -46,8 +46,8 @@ A standard BERT base for Swedish trained on a variety of sources. Vocabulary siz
46
  ```python
47
  from transformers import AutoModel,AutoTokenizer
48
 
49
- tok = AutoTokenizer.from_pretrained('KB/bert-base-swedish-cased')
50
- model = AutoModel.from_pretrained('KB/bert-base-swedish-cased')
51
  ```
52
 
53
 
@@ -58,7 +58,7 @@ This model is fine-tuned on the SUC 3.0 dataset. Using the Huggingface pipeline
58
  ```python
59
  from transformers import pipeline
60
 
61
- nlp = pipeline('ner', model='KB/bert-base-swedish-cased-ner', tokenizer='KB/bert-base-swedish-cased-ner')
62
 
63
  nlp('Idag släpper KB tre språkmodeller.')
64
  ```
@@ -109,8 +109,8 @@ The easiest way to do this is, again, using Huggingface Transformers:
109
  ```python
110
  from transformers import AutoModel,AutoTokenizer
111
 
112
- tok = AutoTokenizer.from_pretrained('KB/albert-base-swedish-cased-alpha'),
113
- model = AutoModel.from_pretrained('KB/albert-base-swedish-cased-alpha')
114
  ```
115
 
116
  ## Acknowledgements ❤️
 
46
  ```python
47
  from transformers import AutoModel,AutoTokenizer
48
 
49
+ tok = AutoTokenizer.from_pretrained('KBLab/bert-base-swedish-cased')
50
+ model = AutoModel.from_pretrained('KBLab/bert-base-swedish-cased')
51
  ```
52
 
53
 
 
58
  ```python
59
  from transformers import pipeline
60
 
61
+ nlp = pipeline('ner', model='KBLab/bert-base-swedish-cased-ner', tokenizer='KBLab/bert-base-swedish-cased-ner')
62
 
63
  nlp('Idag släpper KB tre språkmodeller.')
64
  ```
 
109
  ```python
110
  from transformers import AutoModel,AutoTokenizer
111
 
112
+ tok = AutoTokenizer.from_pretrained('KBLab/albert-base-swedish-cased-alpha'),
113
+ model = AutoModel.from_pretrained('KBLab/albert-base-swedish-cased-alpha')
114
  ```
115
 
116
  ## Acknowledgements ❤️