SamPO
Collection
Eliminating Biased Length Reliance of Direct Preference Optimization via Down-Sampled KL Divergence
•
4 items
•
Updated
This repository provides a fine-tuned version of Llama-3-8B-Instruct, using our proposed SamPO algorithm: Eliminating Biased Length Reliance of Direct Preference Optimization via Down-Sampled KL Divergence. We obey all licenses mentioned in llama3's work.
Model | GSM8K | IFEval | PiQA | MMLU | TruthfulQA | AlpacaEval2 | LC AlpacaEval2 | Length in Tokens |
---|---|---|---|---|---|---|---|---|
Llama3-8B-Instruct | 75.06 | 49.40 | 80.69 | 63.85 | 36.47 | 22.57 | 22.92 | 421 |
Llama3-8B-Instruct-DPO | 75.59 | 51.80 | 81.94 | 64.06 | 40.39 | 23.34 | 23.20 | 422 |
Llama3-8B-Instruct-Iterative-DPO | 74.91 | 52.52 | 81.66 | 64.02 | 39.90 | 23.92 | 25.50 | 403 |
Llama3-8B-Instruct-Iterative-SamPO | 77.81 | 60.55 | 81.18 | 64.12 | 44.07 | 30.68 | 35.14 | 377 |
Five conditional benchmarks, using lm-evaluation-harness:
One open-ended benchmark, using official alpaca_eval:
The model is trained to use the following format:
<|start_header_id|>user<|end_header_id|>
{PROMPT}<|eot_id|>
<|start_header_id|>assistant<|end_header_id|>
{Response}
The following hyperparameters were used during DPO/SamPO training:
Base model
meta-llama/Meta-Llama-3-8B-Instruct