Edit model card

distilhubert-finetuned-gtzan

This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8818
  • Accuracy: 0.85

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 17

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.5851 1.0 113 1.7243 0.5
1.2937 2.0 226 1.2310 0.68
0.9718 3.0 339 0.8918 0.76
0.6613 4.0 452 0.6837 0.81
0.3693 5.0 565 0.6250 0.82
0.2991 6.0 678 0.5740 0.82
0.1381 7.0 791 0.5874 0.83
0.2047 8.0 904 0.5824 0.86
0.1192 9.0 1017 0.7106 0.83
0.0652 10.0 1130 0.6576 0.87
0.0105 11.0 1243 0.8236 0.84
0.0074 12.0 1356 0.7874 0.85
0.0064 13.0 1469 0.9066 0.84
0.0041 14.0 1582 0.8426 0.85
0.0038 15.0 1695 0.8676 0.84
0.0039 16.0 1808 0.8820 0.85
0.0036 17.0 1921 0.8818 0.85

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.13.1
  • Tokenizers 0.13.3
Downloads last month
11
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train Joserzapata/distilhubert-finetuned-gtzan