SentenceTransformer based on BAAI/bge-large-en-v1.5

This is a sentence-transformers model finetuned from BAAI/bge-large-en-v1.5 on the spectrum-design-docs dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-large-en-v1.5
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 1024 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:
  • Language: en

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("JianLiao/spectrum-doc-fine-tuned")
# Run inference
sentences = [
    'Represent this sentence for searching relevant passages: How can a designer balance the need for clear text links and the need for emphasized text in a user interface?',
    "Typography\nUsage guidelines\nDon't use underlines for adding emphasis: Underlines are reserved for text links only. They should not be used as a way for adding emphasis to words.\n\n",
    'Meter\nOptions\nPositive variant: The positive variant has a green fill to show the value. This can be used to represent a positive semantic value, such as when there’s a lot of space remaining.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.0075
cosine_accuracy@3 0.0156
cosine_accuracy@5 0.0475
cosine_accuracy@10 0.7815
cosine_precision@1 0.0075
cosine_precision@3 0.0052
cosine_precision@5 0.0095
cosine_precision@10 0.0782
cosine_recall@1 0.0075
cosine_recall@3 0.0156
cosine_recall@5 0.0475
cosine_recall@10 0.7815
cosine_ndcg@10 0.2544
cosine_mrr@10 0.1078
cosine_map@100 0.1164

Training Details

Training Dataset

spectrum-design-docs

  • Dataset: spectrum-design-docs at 23f5565
  • Size: 14,737 training samples
  • Columns: anchor and positive
  • Approximate statistics based on the first 1000 samples:
    anchor positive
    type string string
    details
    • min: 20 tokens
    • mean: 30.87 tokens
    • max: 47 tokens
    • min: 18 tokens
    • mean: 97.17 tokens
    • max: 512 tokens
  • Samples:
    anchor positive
    Represent this sentence for searching relevant passages: Are there any specific guidelines or best practices provided by the Spectrum team for integrating Spectrum CSS into a new or existing project? Spectrum CSS: An open source CSS-only implementation of Spectrum, maintained by the Spectrum team.
    Dependency chain: Spectrum DNA → Spectrum CSS


    GitHub repository
    Website
    #spectrum_css
    Represent this sentence for searching relevant passages: How does the default setting for progress circles affect their behavior in a UI? Progress circle
    Options
    Indeterminate: A progress circle can be either determinate or indeterminate. By default, progress circles are determinate. Use a determinate progress circle when progress can be calculated against a specific goal (e.g., downloading a file of a known size). Use an indeterminate progress circle when progress is happening but the time or effort to completion can’t be determined (e.g., attempting to reconnect to a server).
    Represent this sentence for searching relevant passages: What tools or methods can designers use to test the effectiveness of wrapped legends in their designs? Legend
    Behaviors
    Wrapping: When there isn’t enough space, wrap legends to ensure that dimension values are shown.
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 22
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 16
  • learning_rate: 2e-05
  • num_train_epochs: 100
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • bf16: True
  • tf32: True
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • prompts: {'anchor': 'Represent this sentence for searching relevant passages: '}
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 22
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 16
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 100
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: True
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: True
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: {'anchor': 'Represent this sentence for searching relevant passages: '}
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss sds_cosine_ndcg@10
1.0 7 - 0.2255
1.48 10 0.2646 -
2.0 14 - 0.2282
2.96 20 0.1412 -
3.0 21 - 0.2358
4.0 28 - 0.2397
4.32 30 0.0638 -
5.0 35 - 0.2430
5.8 40 0.0425 -
6.0 42 - 0.2449
7.0 49 - 0.2462
7.16 50 0.0237 -
8.0 56 - 0.2428
8.64 60 0.015 -
9.0 63 - 0.2456
10.0 70 0.0082 0.2456
11.0 77 - 0.2498
11.48 80 0.0052 -
12.0 84 - 0.2474
12.96 90 0.0035 -
13.0 91 - 0.2455
14.0 98 - 0.2475
14.32 100 0.0022 -
15.0 105 - 0.2472
15.8 110 0.002 -
16.0 112 - 0.2486
17.0 119 - 0.2506
17.16 120 0.0015 -
18.0 126 - 0.2490
18.64 130 0.0013 -
19.0 133 - 0.2489
20.0 140 0.0012 0.2491
21.0 147 - 0.2493
21.48 150 0.0011 -
22.0 154 - 0.2487
22.96 160 0.001 -
23.0 161 - 0.2486
24.0 168 - 0.2490
24.32 170 0.0008 -
25.0 175 - 0.2502
25.8 180 0.0008 -
26.0 182 - 0.2505
27.0 189 - 0.2523
27.16 190 0.0008 -
28.0 196 - 0.2516
28.64 200 0.0007 -
29.0 203 - 0.2509
30.0 210 0.0007 0.2522
31.0 217 - 0.2522
31.48 220 0.0006 -
32.0 224 - 0.2534
32.96 230 0.0007 -
33.0 231 - 0.2523
34.0 238 - 0.2524
34.32 240 0.0006 -
35.0 245 - 0.2518
35.8 250 0.0006 -
36.0 252 - 0.2529
37.0 259 - 0.2524
37.16 260 0.0006 -
38.0 266 - 0.2530
38.64 270 0.0005 -
39.0 273 - 0.2526
40.0 280 0.0006 0.2539
41.0 287 - 0.2529
41.48 290 0.0005 -
42.0 294 - 0.2545
42.96 300 0.0006 -
43.0 301 - 0.2534
44.0 308 - 0.2536
44.32 310 0.0004 -
45.0 315 - 0.2521
45.8 320 0.0005 -
46.0 322 - 0.2532
47.0 329 - 0.2519
47.16 330 0.0005 -
48.0 336 - 0.2525
48.64 340 0.0004 -
49.0 343 - 0.2535
50.0 350 0.0005 0.2542
51.0 357 - 0.2540
51.48 360 0.0004 -
52.0 364 - 0.2542
52.96 370 0.0005 -
53.0 371 - 0.2538
54.0 378 - 0.2533
54.32 380 0.0004 -
55.0 385 - 0.2544
55.8 390 0.0004 -
56.0 392 - 0.2539
57.0 399 - 0.2541
57.16 400 0.0005 -
58.0 406 - 0.2532
58.64 410 0.0004 -
59.0 413 - 0.2543
60.0 420 0.0004 0.2532
61.0 427 - 0.2541
61.48 430 0.0004 -
62.0 434 - 0.2542
62.96 440 0.0005 -
63.0 441 - 0.2546
64.0 448 - 0.2549
64.32 450 0.0003 -
65.0 455 - 0.2557
65.8 460 0.0004 -
66.0 462 - 0.2557
67.0 469 - 0.2539
67.16 470 0.0004 -
68.0 476 - 0.2538
68.64 480 0.0004 -
69.0 483 - 0.2538
70.0 490 0.0004 0.2542
71.0 497 - 0.2532
71.48 500 0.0004 -
72.0 504 - 0.2538
72.96 510 0.0004 -
73.0 511 - 0.2545
74.0 518 - 0.2531
74.32 520 0.0003 -
75.0 525 - 0.2534
75.8 530 0.0004 -
76.0 532 - 0.2541
77.0 539 - 0.2545
77.16 540 0.0004 -
78.0 546 - 0.2536
78.64 550 0.0004 -
79.0 553 - 0.2545
80.0 560 0.0004 0.2540
81.0 567 - 0.2545
81.48 570 0.0004 -
82.0 574 - 0.2541
82.96 580 0.0004 -
83.0 581 - 0.2545
84.0 588 - 0.2538
84.32 590 0.0004 -
85.0 595 - 0.2546
85.8 600 0.0004 0.2544
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.12.8
  • Sentence Transformers: 3.3.1
  • Transformers: 4.47.1
  • PyTorch: 2.5.1+cu124
  • Accelerate: 1.2.1
  • Datasets: 3.2.0
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
525
Safetensors
Model size
335M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for JianLiao/spectrum-doc-fine-tuned

Finetuned
(36)
this model

Dataset used to train JianLiao/spectrum-doc-fine-tuned

Evaluation results