Jaward Sesay's picture

Jaward Sesay

Jaward

AI & ML interests

I like to train large deep neural nets too 🧠🤖💥 | First Paper (AutoAgents: A Framework for Automatic Agent Generation) Accepted @ IJCAI 2024 | Role Model Karpathy

Recent Activity

Organizations

MLX Community's profile picture

Jaward's activity

posted an update about 11 hours ago
posted an update 9 days ago
replied to their post 19 days ago
view reply

bro if you had read the repo you would see that this implementation is for educational purpose, it's not done because it's easy. Not to mention unsloth is using trl's GRPO trainer which is super slow on cpu and does not scale for models under 500M params, I tried it both on cpu and gpu. This custom implementation cuts most of the heavy lifting allowing you to train and scale faster even on cpu, plus a bunch of custom configs with a simplified GRPO trainer in under 500 lines of code. There's a lot one can learn from it.

posted an update 21 days ago
view post
Post
3862
Finally here it is: a faster, custom, scalable GRPO trainer for smaller models with < 500M params, can train on 8gb ram cpu, also supports gpu for sanity sake (includes support for vllm + flash attention). Using smolLM2-135M/360M-instructs as ref & base models. Experience your own “aha” moment 🐳 on 8gb ram.
Code: https://github.com/Jaykef/ai-algorithms/blob/main/smollm2_360M_135M_grpo_gsm8k.ipynb
  • 2 replies
·
posted an update about 1 month ago
view post
Post
3450
ByteDance drops OmniHuman🔥
This is peak SOTA performance - flawless natural gestures with perfect lip sync and facial expressions. This is the second time they've released SOTA level talking-heads only this time with hands and body motion.
Project: https://omnihuman-lab.github.io/
·
posted an update about 1 month ago
view post
Post
1505
The beauty in GRPO is the fact that it doesn’t care if the rewards are rule-based or learned, the hack: let the data self-normalize— trajectories in a batch compete against their mean, no value model, no extra params, just clean, efficient RL that cuts memory usage by 50%, while maintaining SOTA performance. btw it was introduced 9months prior to R1: arxiv.org/pdf/2402.03300
  • 1 reply
·
upvoted an article about 1 month ago
view article
Article

Open-R1: a fully open reproduction of DeepSeek-R1

795