File size: 35,518 Bytes
483b1a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a951ae0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
# Copyright 2024 Infinigence AI Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""This file is copied from https://huggingface.co./openbmb/MiniCPM-V-2_6/blob/main/resampler.py and modified as needed."""

from functools import partial
from typing import Optional, Tuple
import numpy as np
import warnings

import torch
from torch import nn
from torch import Tensor
import torch.nn.functional as F
from torch.nn.functional import *
from torch.nn.modules.activation import *
from torch.nn.init import trunc_normal_, constant_, xavier_normal_, xavier_uniform_

from transformers.integrations import is_deepspeed_zero3_enabled

def get_2d_sincos_pos_embed(embed_dim, image_size):
    """
    image_size: image_size or (image_height, image_width)
    return:
    pos_embed: [image_height, image_width, embed_dim]
    """
    if isinstance(image_size, int):
        grid_h_size, grid_w_size = image_size, image_size
    else:
        grid_h_size, grid_w_size = image_size[0], image_size[1]

    grid_h = np.arange(grid_h_size, dtype=np.float32)
    grid_w = np.arange(grid_w_size, dtype=np.float32)
    grid = np.meshgrid(grid_w, grid_h)  # here w goes first
    grid = np.stack(grid, axis=0)

    pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
    return pos_embed


def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
    assert embed_dim % 2 == 0

    # use half of dimensions to encode grid_h
    emb_h = get_1d_sincos_pos_embed_from_grid_new(embed_dim // 2, grid[0])  # (H, W, D/2)
    emb_w = get_1d_sincos_pos_embed_from_grid_new(embed_dim // 2, grid[1])  # (H, W, D/2)

    emb = np.concatenate([emb_h, emb_w], axis=-1)  # (H, W, D)
    return emb


def get_1d_sincos_pos_embed_from_grid_new(embed_dim, pos):
    """
    embed_dim: output dimension for each position
    pos: a list of positions to be encoded: size (H, W)
    out: (H, W, D)
    """
    assert embed_dim % 2 == 0
    omega = np.arange(embed_dim // 2, dtype=np.float32)
    omega /= embed_dim / 2.
    omega = 1. / 10000 ** omega  # (D/2,)

    out = np.einsum('hw,d->hwd', pos, omega)  # (H, W, D/2), outer product

    emb_sin = np.sin(out)  # (H, W, D/2)
    emb_cos = np.cos(out)  # (H, W, D/2)

    emb = np.concatenate([emb_sin, emb_cos], axis=-1)  # (H, W, D)
    return emb


class Resampler(nn.Module):
    """
    A 2D perceiver-resampler network with one cross attention layers by
       given learnable queries and 2d sincos pos_emb
    Outputs:
        A tensor with the shape of (batch_size, num_queries, embed_dim)
    """

    def __init__(
            self,
            num_queries,
            embed_dim,
            num_heads,
            kv_dim=None,
            norm_layer=partial(nn.LayerNorm, eps=1e-6),
            adaptive=False,
            max_size=(70, 70),
    ):
        super().__init__()
        self.num_queries = num_queries
        self.embed_dim = embed_dim
        self.num_heads = num_heads
        self.adaptive = adaptive
        self.max_size = max_size

        self.query = nn.Parameter(torch.zeros(self.num_queries, embed_dim))

        if kv_dim is not None and kv_dim != embed_dim:
            self.kv_proj = nn.Linear(kv_dim, embed_dim, bias=False)
        else:
            self.kv_proj = nn.Identity()

        # Change to nn.MultiheadAttention instead of MultiheadAttention in this file.
        self.attn = nn.MultiheadAttention(embed_dim, num_heads)
        self.ln_q = norm_layer(embed_dim)
        self.ln_kv = norm_layer(embed_dim)

        self.ln_post = norm_layer(embed_dim)
        self.proj = nn.Parameter((embed_dim ** -0.5) * torch.randn(embed_dim, embed_dim))

        self._set_2d_pos_cache(self.max_size)

    def _set_2d_pos_cache(self, max_size, device='cpu'):
        if is_deepspeed_zero3_enabled():
            device='cuda'
        pos_embed = torch.from_numpy(get_2d_sincos_pos_embed(self.embed_dim, max_size)).float().to(device)
        self.register_buffer("pos_embed", pos_embed, persistent=False)

    def _adjust_pos_cache(self, tgt_sizes, device):
        max_h = torch.max(tgt_sizes[:, 0])
        max_w = torch.max(tgt_sizes[:, 1])
        if max_h > self.max_size[0] or max_w > self.max_size[1]:
            self.max_size = [max(max_h, self.max_size[0]), max(max_w, self.max_size[1])]
            self._set_2d_pos_cache(self.max_size, device)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    def forward(self, x, tgt_sizes=None):
        assert x.shape[0] == tgt_sizes.shape[0]
        bs = x.shape[0]

        device = x.device
        dtype = x.dtype

        patch_len = tgt_sizes[:, 0] * tgt_sizes[:, 1]

        self._adjust_pos_cache(tgt_sizes, device=device)

        max_patch_len = torch.max(patch_len)
        key_padding_mask = torch.zeros((bs, max_patch_len), dtype=torch.bool, device=device)

        pos_embed = []
        for i in range(bs):
            tgt_h, tgt_w = tgt_sizes[i]
            pos_embed.append(self.pos_embed[:tgt_h, :tgt_w, :].reshape((tgt_h * tgt_w, -1)).to(dtype))  # patches * D
            key_padding_mask[i, patch_len[i]:] = True

        pos_embed = torch.nn.utils.rnn.pad_sequence(
            pos_embed, batch_first=True, padding_value=0.0).permute(1, 0, 2)  # BLD => L * B * D

        x = self.kv_proj(x)  # B * L * D
        x = self.ln_kv(x).permute(1, 0, 2)  # L * B * D

        q = self.ln_q(self.query)  # Q * D

        out = self.attn(
            self._repeat(q, bs),  # Q * B * D
            x + pos_embed,  # L * B * D +  L * B * D
            x,
            key_padding_mask=key_padding_mask)[0]
        #  out: Q * B * D
        x = out.permute(1, 0, 2)  # B * Q * D

        x = self.ln_post(x)
        x = x @ self.proj
        return x

    def _repeat(self, query, N: int):
        return query.unsqueeze(1).repeat(1, N, 1)


class MultiheadAttention(nn.MultiheadAttention):
    def __init__(self, embed_dim, num_heads, dropout=0., bias=True, add_bias_kv=False, 
                 add_zero_attn=False, kdim=None, vdim=None, batch_first=False, device=None, dtype=None):
        super().__init__(embed_dim, num_heads, dropout, bias, add_bias_kv, add_zero_attn, kdim, vdim, batch_first, device, dtype)

        # rewrite out_proj layer,with nn.Linear
        self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias, device=device, dtype=dtype)

    def forward(
                self,
                query: Tensor,
                key: Tensor,
                value: Tensor,
                key_padding_mask: Optional[Tensor] = None,
                need_weights: bool = True,
                attn_mask: Optional[Tensor] = None,
                average_attn_weights: bool = True,
                is_causal : bool = False) -> Tuple[Tensor, Optional[Tensor]]:
        why_not_fast_path = ''
        if ((attn_mask is not None and torch.is_floating_point(attn_mask))
           or (key_padding_mask is not None) and torch.is_floating_point(key_padding_mask)):
            why_not_fast_path = "floating-point masks are not supported for fast path."

        is_batched = query.dim() == 3

        key_padding_mask = _canonical_mask(
            mask=key_padding_mask,
            mask_name="key_padding_mask",
            other_type=F._none_or_dtype(attn_mask),
            other_name="attn_mask",
            target_type=query.dtype
        )

        attn_mask = _canonical_mask(
            mask=attn_mask,
            mask_name="attn_mask",
            other_type=None,
            other_name="",
            target_type=query.dtype,
            check_other=False,
        )


        if not is_batched:
            why_not_fast_path = f"input not batched; expected query.dim() of 3 but got {query.dim()}"
        elif query is not key or key is not value:
            # When lifting this restriction, don't forget to either
            # enforce that the dtypes all match or test cases where
            # they don't!
            why_not_fast_path = "non-self attention was used (query, key, and value are not the same Tensor)"
        elif self.in_proj_bias is not None and query.dtype != self.in_proj_bias.dtype:
            why_not_fast_path = f"dtypes of query ({query.dtype}) and self.in_proj_bias ({self.in_proj_bias.dtype}) don't match"
        elif self.in_proj_weight is None:
            why_not_fast_path = "in_proj_weight was None"
        elif query.dtype != self.in_proj_weight.dtype:
            # this case will fail anyway, but at least they'll get a useful error message.
            why_not_fast_path = f"dtypes of query ({query.dtype}) and self.in_proj_weight ({self.in_proj_weight.dtype}) don't match"
        elif self.training:
            why_not_fast_path = "training is enabled"
        elif (self.num_heads % 2) != 0:
            why_not_fast_path = "self.num_heads is not even"
        elif not self.batch_first:
            why_not_fast_path = "batch_first was not True"
        elif self.bias_k is not None:
            why_not_fast_path = "self.bias_k was not None"
        elif self.bias_v is not None:
            why_not_fast_path = "self.bias_v was not None"
        elif self.add_zero_attn:
            why_not_fast_path = "add_zero_attn was enabled"
        elif not self._qkv_same_embed_dim:
            why_not_fast_path = "_qkv_same_embed_dim was not True"
        elif query.is_nested and (key_padding_mask is not None or attn_mask is not None):
            why_not_fast_path = "supplying both src_key_padding_mask and src_mask at the same time \
                                 is not supported with NestedTensor input"
        elif torch.is_autocast_enabled():
            why_not_fast_path = "autocast is enabled"

        if not why_not_fast_path:
            tensor_args = (
                query,
                key,
                value,
                self.in_proj_weight,
                self.in_proj_bias,
                self.out_proj.weight,
                self.out_proj.bias,
            )
            # We have to use list comprehensions below because TorchScript does not support
            # generator expressions.
            if torch.overrides.has_torch_function(tensor_args):
                why_not_fast_path = "some Tensor argument has_torch_function"
            elif _is_make_fx_tracing():
                why_not_fast_path = "we are running make_fx tracing"
            elif not all(_check_arg_device(x) for x in tensor_args):
                why_not_fast_path = ("some Tensor argument's device is neither one of "
                                     f"cpu, cuda or {torch.utils.backend_registration._privateuse1_backend_name}")
            elif torch.is_grad_enabled() and any(_arg_requires_grad(x) for x in tensor_args):
                why_not_fast_path = ("grad is enabled and at least one of query or the "
                                     "input/output projection weights or biases requires_grad")
            if not why_not_fast_path:
                merged_mask, mask_type = self.merge_masks(attn_mask, key_padding_mask, query)

                if self.in_proj_bias is not None and self.in_proj_weight is not None:
                    return torch._native_multi_head_attention(
                        query,
                        key,
                        value,
                        self.embed_dim,
                        self.num_heads,
                        self.in_proj_weight,
                        self.in_proj_bias,
                        self.out_proj.weight,
                        self.out_proj.bias,
                        merged_mask,
                        need_weights,
                        average_attn_weights,
                        mask_type)

        any_nested = query.is_nested or key.is_nested or value.is_nested
        assert not any_nested, ("MultiheadAttention does not support NestedTensor outside of its fast path. " +
                                f"The fast path was not hit because {why_not_fast_path}")

        if self.batch_first and is_batched:
            # make sure that the transpose op does not affect the "is" property
            if key is value:
                if query is key:
                    query = key = value = query.transpose(1, 0)
                else:
                    query, key = (x.transpose(1, 0) for x in (query, key))
                    value = key
            else:
                query, key, value = (x.transpose(1, 0) for x in (query, key, value))
        
        if not self._qkv_same_embed_dim:
            attn_output, attn_output_weights = self.multi_head_attention_forward(
                query, key, value, self.embed_dim, self.num_heads,
                self.in_proj_weight, self.in_proj_bias,
                self.bias_k, self.bias_v, self.add_zero_attn,
                self.dropout, self.out_proj.weight, self.out_proj.bias,
                training=self.training,
                key_padding_mask=key_padding_mask, need_weights=need_weights,
                attn_mask=attn_mask,
                use_separate_proj_weight=True,
                q_proj_weight=self.q_proj_weight, k_proj_weight=self.k_proj_weight,
                v_proj_weight=self.v_proj_weight,
                average_attn_weights=average_attn_weights,
                is_causal=is_causal)
        else:
            attn_output, attn_output_weights = self.multi_head_attention_forward(
                query, key, value, self.embed_dim, self.num_heads,
                self.in_proj_weight, self.in_proj_bias,
                self.bias_k, self.bias_v, self.add_zero_attn,
                self.dropout, self.out_proj.weight, self.out_proj.bias,
                training=self.training,
                key_padding_mask=key_padding_mask,
                need_weights=need_weights,
                attn_mask=attn_mask,
                average_attn_weights=average_attn_weights,
                is_causal=is_causal)
        if self.batch_first and is_batched:
            return attn_output.transpose(1, 0), attn_output_weights
        else:
            return attn_output, attn_output_weights
            
    def multi_head_attention_forward(
        self,
        query: Tensor,
        key: Tensor,
        value: Tensor,
        embed_dim_to_check: int,
        num_heads: int,
        in_proj_weight: Optional[Tensor],
        in_proj_bias: Optional[Tensor],
        bias_k: Optional[Tensor],
        bias_v: Optional[Tensor],
        add_zero_attn: bool,
        dropout_p: float,
        out_proj_weight: Tensor,
        out_proj_bias: Optional[Tensor],
        training: bool = True,
        key_padding_mask: Optional[Tensor] = None,
        need_weights: bool = True,
        attn_mask: Optional[Tensor] = None,
        use_separate_proj_weight: bool = False,
        q_proj_weight: Optional[Tensor] = None,
        k_proj_weight: Optional[Tensor] = None,
        v_proj_weight: Optional[Tensor] = None,
        static_k: Optional[Tensor] = None,
        static_v: Optional[Tensor] = None,
        average_attn_weights: bool = True,
        is_causal: bool = False,
    ) -> Tuple[Tensor, Optional[Tensor]]:
        tens_ops = (query, key, value, in_proj_weight, in_proj_bias, bias_k, bias_v, out_proj_weight, out_proj_bias)
    
        is_batched = _mha_shape_check(query, key, value, key_padding_mask, attn_mask, num_heads)
    
        # For unbatched input, we unsqueeze at the expected batch-dim to pretend that the input
        # is batched, run the computation and before returning squeeze the
        # batch dimension so that the output doesn't carry this temporary batch dimension.
        if not is_batched:
            # unsqueeze if the input is unbatched
            query = query.unsqueeze(1)
            key = key.unsqueeze(1)
            value = value.unsqueeze(1)
            if key_padding_mask is not None:
                key_padding_mask = key_padding_mask.unsqueeze(0)
    
        # set up shape vars
        tgt_len, bsz, embed_dim = query.shape
        src_len, _, _ = key.shape
    
        key_padding_mask = _canonical_mask(
            mask=key_padding_mask,
            mask_name="key_padding_mask",
            other_type=_none_or_dtype(attn_mask),
            other_name="attn_mask",
            target_type=query.dtype
        )
    
        if is_causal and attn_mask is None:
            raise RuntimeError(
                "Need attn_mask if specifying the is_causal hint. "
                "You may use the Transformer module method "
                "`generate_square_subsequent_mask` to create this mask."
            )
    
        if is_causal and key_padding_mask is None and not need_weights:
            # when we have a kpm or need weights, we need attn_mask
            # Otherwise, we use the is_causal hint go as is_causal
            # indicator to SDPA.
            attn_mask = None
        else:
            attn_mask = _canonical_mask(
                mask=attn_mask,
                mask_name="attn_mask",
                other_type=None,
                other_name="",
                target_type=query.dtype,
                check_other=False,
            )
    
            if key_padding_mask is not None:
                # We have the attn_mask, and use that to merge kpm into it.
                # Turn off use of is_causal hint, as the merged mask is no
                # longer causal.
                is_causal = False
    
        assert embed_dim == embed_dim_to_check, \
            f"was expecting embedding dimension of {embed_dim_to_check}, but got {embed_dim}"
        if isinstance(embed_dim, torch.Tensor):
            # embed_dim can be a tensor when JIT tracing
            head_dim = embed_dim.div(num_heads, rounding_mode='trunc')
        else:
            head_dim = embed_dim // num_heads
        assert head_dim * num_heads == embed_dim, f"embed_dim {embed_dim} not divisible by num_heads {num_heads}"
        if use_separate_proj_weight:
            # allow MHA to have different embedding dimensions when separate projection weights are used
            assert key.shape[:2] == value.shape[:2], \
                f"key's sequence and batch dims {key.shape[:2]} do not match value's {value.shape[:2]}"
        else:
            assert key.shape == value.shape, f"key shape {key.shape} does not match value shape {value.shape}"
    
        #
        # compute in-projection
        #
        if not use_separate_proj_weight:
            assert in_proj_weight is not None, "use_separate_proj_weight is False but in_proj_weight is None"
            q, k, v = _in_projection_packed(query, key, value, in_proj_weight, in_proj_bias)
        else:
            assert q_proj_weight is not None, "use_separate_proj_weight is True but q_proj_weight is None"
            assert k_proj_weight is not None, "use_separate_proj_weight is True but k_proj_weight is None"
            assert v_proj_weight is not None, "use_separate_proj_weight is True but v_proj_weight is None"
            if in_proj_bias is None:
                b_q = b_k = b_v = None
            else:
                b_q, b_k, b_v = in_proj_bias.chunk(3)
            q, k, v = _in_projection(query, key, value, q_proj_weight, k_proj_weight, v_proj_weight, b_q, b_k, b_v)
    
        # prep attention mask
    
        if attn_mask is not None:
            # ensure attn_mask's dim is 3
            if attn_mask.dim() == 2:
                correct_2d_size = (tgt_len, src_len)
                if attn_mask.shape != correct_2d_size:
                    raise RuntimeError(f"The shape of the 2D attn_mask is {attn_mask.shape}, but should be {correct_2d_size}.")
                attn_mask = attn_mask.unsqueeze(0)
            elif attn_mask.dim() == 3:
                correct_3d_size = (bsz * num_heads, tgt_len, src_len)
                if attn_mask.shape != correct_3d_size:
                    raise RuntimeError(f"The shape of the 3D attn_mask is {attn_mask.shape}, but should be {correct_3d_size}.")
            else:
                raise RuntimeError(f"attn_mask's dimension {attn_mask.dim()} is not supported")
    
        # add bias along batch dimension (currently second)
        if bias_k is not None and bias_v is not None:
            assert static_k is None, "bias cannot be added to static key."
            assert static_v is None, "bias cannot be added to static value."
            k = torch.cat([k, bias_k.repeat(1, bsz, 1)])
            v = torch.cat([v, bias_v.repeat(1, bsz, 1)])
            if attn_mask is not None:
                attn_mask = pad(attn_mask, (0, 1))
            if key_padding_mask is not None:
                key_padding_mask = pad(key_padding_mask, (0, 1))
        else:
            assert bias_k is None
            assert bias_v is None
    
        #
        # reshape q, k, v for multihead attention and make em batch first
        #
        q = q.view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1)
        if static_k is None:
            k = k.view(k.shape[0], bsz * num_heads, head_dim).transpose(0, 1)
        else:
            # TODO finish disentangling control flow so we don't do in-projections when statics are passed
            assert static_k.size(0) == bsz * num_heads, \
                f"expecting static_k.size(0) of {bsz * num_heads}, but got {static_k.size(0)}"
            assert static_k.size(2) == head_dim, \
                f"expecting static_k.size(2) of {head_dim}, but got {static_k.size(2)}"
            k = static_k
        if static_v is None:
            v = v.view(v.shape[0], bsz * num_heads, head_dim).transpose(0, 1)
        else:
            # TODO finish disentangling control flow so we don't do in-projections when statics are passed
            assert static_v.size(0) == bsz * num_heads, \
                f"expecting static_v.size(0) of {bsz * num_heads}, but got {static_v.size(0)}"
            assert static_v.size(2) == head_dim, \
                f"expecting static_v.size(2) of {head_dim}, but got {static_v.size(2)}"
            v = static_v
    
        # add zero attention along batch dimension (now first)
        if add_zero_attn:
            zero_attn_shape = (bsz * num_heads, 1, head_dim)
            k = torch.cat([k, torch.zeros(zero_attn_shape, dtype=k.dtype, device=k.device)], dim=1)
            v = torch.cat([v, torch.zeros(zero_attn_shape, dtype=v.dtype, device=v.device)], dim=1)
            if attn_mask is not None:
                attn_mask = pad(attn_mask, (0, 1))
            if key_padding_mask is not None:
                key_padding_mask = pad(key_padding_mask, (0, 1))
    
        # update source sequence length after adjustments
        src_len = k.size(1)
    
        # merge key padding and attention masks
        if key_padding_mask is not None:
            assert key_padding_mask.shape == (bsz, src_len), \
                f"expecting key_padding_mask shape of {(bsz, src_len)}, but got {key_padding_mask.shape}"
            key_padding_mask = key_padding_mask.view(bsz, 1, 1, src_len).   \
                expand(-1, num_heads, -1, -1).reshape(bsz * num_heads, 1, src_len)
            if attn_mask is None:
                attn_mask = key_padding_mask
            else:
                attn_mask = attn_mask + key_padding_mask
    
        # adjust dropout probability
        if not training:
            dropout_p = 0.0
    
        #
        # (deep breath) calculate attention and out projection
        #
    
        if need_weights:
            B, Nt, E = q.shape
            q_scaled = q / math.sqrt(E)
    
            assert not (is_causal and attn_mask is None), "FIXME: is_causal not implemented for need_weights"
    
            if attn_mask is not None:
                attn_output_weights = torch.baddbmm(attn_mask, q_scaled, k.transpose(-2, -1))
            else:
                attn_output_weights = torch.bmm(q_scaled, k.transpose(-2, -1))
            attn_output_weights = softmax(attn_output_weights, dim=-1)
            if dropout_p > 0.0:
                attn_output_weights = dropout(attn_output_weights, p=dropout_p)
    
            attn_output = torch.bmm(attn_output_weights, v)
    
            attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len * bsz, embed_dim)
            attn_output = self.out_proj(attn_output)
            attn_output = attn_output.view(tgt_len, bsz, attn_output.size(1))
    
            # optionally average attention weights over heads
            attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len)
            if average_attn_weights:
                attn_output_weights = attn_output_weights.mean(dim=1)
    
            if not is_batched:
                # squeeze the output if input was unbatched
                attn_output = attn_output.squeeze(1)
                attn_output_weights = attn_output_weights.squeeze(0)
            return attn_output, attn_output_weights
        else:
            # attn_mask can be either (L,S) or (N*num_heads, L, S)
            # if attn_mask's shape is (1, L, S) we need to unsqueeze to (1, 1, L, S)
            # in order to match the input for SDPA of (N, num_heads, L, S)
            if attn_mask is not None:
                if attn_mask.size(0) == 1 and attn_mask.dim() == 3:
                    attn_mask = attn_mask.unsqueeze(0)
                else:
                    attn_mask = attn_mask.view(bsz, num_heads, -1, src_len)
    
            q = q.view(bsz, num_heads, tgt_len, head_dim)
            k = k.view(bsz, num_heads, src_len, head_dim)
            v = v.view(bsz, num_heads, src_len, head_dim)
    
            attn_output = F.scaled_dot_product_attention(q, k, v, attn_mask, dropout_p, is_causal)
            attn_output = attn_output.permute(2, 0, 1, 3).contiguous().view(bsz * tgt_len, embed_dim)
    
            attn_output = self.out_proj(attn_output)
            attn_output = attn_output.view(tgt_len, bsz, attn_output.size(1))
            if not is_batched:
                # squeeze the output if input was unbatched
                attn_output = attn_output.squeeze(1)
            return attn_output, None


def _mha_shape_check(query: Tensor, key: Tensor, value: Tensor,
                     key_padding_mask: Optional[Tensor], attn_mask: Optional[Tensor], num_heads: int):
    # Verifies the expected shape for `query, `key`, `value`, `key_padding_mask` and `attn_mask`
    # and returns if the input is batched or not.
    # Raises an error if `query` is not 2-D (unbatched) or 3-D (batched) tensor.

    # Shape check.
    if query.dim() == 3:
        # Batched Inputs
        is_batched = True
        assert key.dim() == 3 and value.dim() == 3, \
            ("For batched (3-D) `query`, expected `key` and `value` to be 3-D"
             f" but found {key.dim()}-D and {value.dim()}-D tensors respectively")
        if key_padding_mask is not None:
            assert key_padding_mask.dim() == 2, \
                ("For batched (3-D) `query`, expected `key_padding_mask` to be `None` or 2-D"
                 f" but found {key_padding_mask.dim()}-D tensor instead")
        if attn_mask is not None:
            assert attn_mask.dim() in (2, 3), \
                ("For batched (3-D) `query`, expected `attn_mask` to be `None`, 2-D or 3-D"
                 f" but found {attn_mask.dim()}-D tensor instead")
    elif query.dim() == 2:
        # Unbatched Inputs
        is_batched = False
        assert key.dim() == 2 and value.dim() == 2, \
            ("For unbatched (2-D) `query`, expected `key` and `value` to be 2-D"
             f" but found {key.dim()}-D and {value.dim()}-D tensors respectively")

        if key_padding_mask is not None:
            assert key_padding_mask.dim() == 1, \
                ("For unbatched (2-D) `query`, expected `key_padding_mask` to be `None` or 1-D"
                 f" but found {key_padding_mask.dim()}-D tensor instead")

        if attn_mask is not None:
            assert attn_mask.dim() in (2, 3), \
                ("For unbatched (2-D) `query`, expected `attn_mask` to be `None`, 2-D or 3-D"
                 f" but found {attn_mask.dim()}-D tensor instead")
            if attn_mask.dim() == 3:
                expected_shape = (num_heads, query.shape[0], key.shape[0])
                assert attn_mask.shape == expected_shape, \
                    (f"Expected `attn_mask` shape to be {expected_shape} but got {attn_mask.shape}")
    else:
        raise AssertionError(
            f"query should be unbatched 2D or batched 3D tensor but received {query.dim()}-D query tensor")

    return is_batched


def _canonical_mask(
        mask: Optional[Tensor],
        mask_name: str,
        other_type: Optional[DType],
        other_name: str,
        target_type: DType,
        check_other: bool = True,
) -> Optional[Tensor]:

    if mask is not None:
        _mask_dtype = mask.dtype
        _mask_is_float = torch.is_floating_point(mask)
        if _mask_dtype != torch.bool and not _mask_is_float:
            raise AssertionError(
                f"only bool and floating types of {mask_name} are supported")
        if check_other and other_type is not None:
            if _mask_dtype != other_type:
                warnings.warn(
                    f"Support for mismatched {mask_name} and {other_name} "
                    "is deprecated. Use same type for both instead."
                )
        if not _mask_is_float:
            mask = (
                torch.zeros_like(mask, dtype=target_type)
                .masked_fill_(mask, float("-inf"))
            )
    return mask


def _none_or_dtype(input: Optional[Tensor]) -> Optional[DType]:
    if input is None:
        return None
    elif isinstance(input, torch.Tensor):
        return input.dtype
    raise RuntimeError("input to _none_or_dtype() must be None or torch.Tensor")

def _in_projection_packed(
    q: Tensor,
    k: Tensor,
    v: Tensor,
    w: Tensor,
    b: Optional[Tensor] = None,
) -> List[Tensor]:
    r"""
    Performs the in-projection step of the attention operation, using packed weights.
    Output is a triple containing projection tensors for query, key and value.
    Args:
        q, k, v: query, key and value tensors to be projected. For self-attention,
            these are typically the same tensor; for encoder-decoder attention,
            k and v are typically the same tensor. (We take advantage of these
            identities for performance if they are present.) Regardless, q, k and v
            must share a common embedding dimension; otherwise their shapes may vary.
        w: projection weights for q, k and v, packed into a single tensor. Weights
            are packed along dimension 0, in q, k, v order.
        b: optional projection biases for q, k and v, packed into a single tensor
            in q, k, v order.
    Shape:
        Inputs:
        - q: :math:`(..., E)` where E is the embedding dimension
        - k: :math:`(..., E)` where E is the embedding dimension
        - v: :math:`(..., E)` where E is the embedding dimension
        - w: :math:`(E * 3, E)` where E is the embedding dimension
        - b: :math:`E * 3` where E is the embedding dimension
        Output:
        - in output list :math:`[q', k', v']`, each output tensor will have the
            same shape as the corresponding input tensor.
    """
    E = q.size(-1)
    if k is v:
        if q is k:
            # self-attention
            proj = linear(q, w, b)
            # reshape to 3, E and not E, 3 is deliberate for better memory coalescing and keeping same order as chunk()
            proj = proj.unflatten(-1, (3, E)).unsqueeze(0).transpose(0, -2).squeeze(-2).contiguous()
            return proj[0], proj[1], proj[2]
        else:
            # encoder-decoder attention
            w_q, w_kv = w.split([E, E * 2])
            if b is None:
                b_q = b_kv = None
            else:
                b_q, b_kv = b.split([E, E * 2])
            q_proj = linear(q, w_q, b_q)
            kv_proj = linear(k, w_kv, b_kv)
            # reshape to 2, E and not E, 2 is deliberate for better memory coalescing and keeping same order as chunk()
            kv_proj = kv_proj.unflatten(-1, (2, E)).unsqueeze(0).transpose(0, -2).squeeze(-2).contiguous()
            return (q_proj, kv_proj[0], kv_proj[1])
    else:
        w_q, w_k, w_v = w.chunk(3)
        if b is None:
            b_q = b_k = b_v = None
        else:
            b_q, b_k, b_v = b.chunk(3)
        return linear(q, w_q, b_q), linear(k, w_k, b_k), linear(v, w_v, b_v)


def _in_projection(
    q: Tensor,
    k: Tensor,
    v: Tensor,
    w_q: Tensor,
    w_k: Tensor,
    w_v: Tensor,
    b_q: Optional[Tensor] = None,
    b_k: Optional[Tensor] = None,
    b_v: Optional[Tensor] = None,
) -> Tuple[Tensor, Tensor, Tensor]:
    r"""
    Performs the in-projection step of the attention operation. This is simply
    a triple of linear projections, with shape constraints on the weights which
    ensure embedding dimension uniformity in the projected outputs.
    Output is a triple containing projection tensors for query, key and value.
    Args:
        q, k, v: query, key and value tensors to be projected.
        w_q, w_k, w_v: weights for q, k and v, respectively.
        b_q, b_k, b_v: optional biases for q, k and v, respectively.
    Shape:
        Inputs:
        - q: :math:`(Qdims..., Eq)` where Eq is the query embedding dimension and Qdims are any
            number of leading dimensions.
        - k: :math:`(Kdims..., Ek)` where Ek is the key embedding dimension and Kdims are any
            number of leading dimensions.
        - v: :math:`(Vdims..., Ev)` where Ev is the value embedding dimension and Vdims are any
            number of leading dimensions.
        - w_q: :math:`(Eq, Eq)`
        - w_k: :math:`(Eq, Ek)`
        - w_v: :math:`(Eq, Ev)`
        - b_q: :math:`(Eq)`
        - b_k: :math:`(Eq)`
        - b_v: :math:`(Eq)`
        Output: in output triple :math:`(q', k', v')`,
         - q': :math:`[Qdims..., Eq]`
         - k': :math:`[Kdims..., Eq]`
         - v': :math:`[Vdims..., Eq]`
    """
    Eq, Ek, Ev = q.size(-1), k.size(-1), v.size(-1)
    assert w_q.shape == (Eq, Eq), f"expecting query weights shape of {(Eq, Eq)}, but got {w_q.shape}"
    assert w_k.shape == (Eq, Ek), f"expecting key weights shape of {(Eq, Ek)}, but got {w_k.shape}"
    assert w_v.shape == (Eq, Ev), f"expecting value weights shape of {(Eq, Ev)}, but got {w_v.shape}"
    assert b_q is None or b_q.shape == (Eq,), f"expecting query bias shape of {(Eq,)}, but got {b_q.shape}"
    assert b_k is None or b_k.shape == (Eq,), f"expecting key bias shape of {(Eq,)}, but got {b_k.shape}"
    assert b_v is None or b_v.shape == (Eq,), f"expecting value bias shape of {(Eq,)}, but got {b_v.shape}"
    return linear(q, w_q, b_q), linear(k, w_k, b_k), linear(v, w_v, b_v)