metadata
license: apache-2.0
library_name: transformers
tags:
- finetune
- dpo
- chatml
base_model:
- InferenceIllusionist/Excalibur-7b
datasets:
- Intel/orca_dpo_pairs
model-index:
- name: Excalibur-7b-DPO
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 70.9
name: normalized accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=InferenceIllusionist/Excalibur-7b-DPO
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 87.93
name: normalized accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=InferenceIllusionist/Excalibur-7b-DPO
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 65.46
name: accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=InferenceIllusionist/Excalibur-7b-DPO
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 70.82
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=InferenceIllusionist/Excalibur-7b-DPO
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 82.48
name: accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=InferenceIllusionist/Excalibur-7b-DPO
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 65.43
name: accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=InferenceIllusionist/Excalibur-7b-DPO
name: Open LLM Leaderboard
Excalibur-7b-DPO
An initial foray into the world of fine-tuning. The goal of this release was to amplify the quality of the original model's responses, in particular for vision use cases*
Weighted (Importance Matrix) Quants available here
Static (Legacy) quants available here
Notes & Methodology
- Excalibur-7b fine-tuned with Direct Preference Optimization (DPO) using Intel/orca_dpo_pairs
- This is a quick experiment to determine the impact of DPO finetuning on the Excelsior-7b base model
- Ran for a little over an hour on a single A100
- Fine-tuning succeeded in making model conversational and more well-rounded
- Benchmark scores increased in the following categories versus base Excelsior-7b:
- ARC: 69.71 -> 70.9
- HellaSwag: 87.56 -> 87.93
- TruthfulQA: 67.24 -> 70.82
- Average: 73.6 -> 73.84
- Precision: bfloat16
Sample Question - Vision
*Requires additional mmproj file. You have two options for vision functionality (available inside this repo):
Select the gguf file of your choice in Koboldcpp as usual, then make sure to choose the mmproj file above in the LLaVA mmproj field of the model submenu:
Prompt Format
- For best results please use ChatML for the prompt format. Alpaca may also work.
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 73.84 |
AI2 Reasoning Challenge (25-Shot) | 70.90 |
HellaSwag (10-Shot) | 87.93 |
MMLU (5-Shot) | 65.46 |
TruthfulQA (0-shot) | 70.82 |
Winogrande (5-shot) | 82.48 |
GSM8k (5-shot) | 65.43 |