convnext-base-224_finetuned_on_ImageIn_annotations

This model is a fine-tuned version of facebook/convnext-base-224 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0749
  • Precision: 0.9722
  • Recall: 0.9811
  • F1: 0.9765
  • Accuracy: 0.9824

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 83 0.1368 0.9748 0.9632 0.9688 0.9772
No log 2.0 166 0.0734 0.9750 0.9727 0.9739 0.9807
No log 3.0 249 0.0693 0.9750 0.9727 0.9739 0.9807
No log 4.0 332 0.0698 0.9750 0.9727 0.9739 0.9807
No log 5.0 415 0.0688 0.9750 0.9727 0.9739 0.9807
No log 6.0 498 0.0690 0.9729 0.9751 0.9740 0.9807
0.0947 7.0 581 0.0666 0.9689 0.9800 0.9743 0.9807
0.0947 8.0 664 0.0642 0.9689 0.9800 0.9743 0.9807
0.0947 9.0 747 0.0790 0.9763 0.9763 0.9763 0.9824
0.0947 10.0 830 0.0813 0.9750 0.9727 0.9739 0.9807
0.0947 11.0 913 0.0797 0.9750 0.9727 0.9739 0.9807
0.0947 12.0 996 0.0791 0.9763 0.9763 0.9763 0.9824
0.0205 13.0 1079 0.0871 0.9750 0.9727 0.9739 0.9807
0.0205 14.0 1162 0.0716 0.9722 0.9811 0.9765 0.9824
0.0205 15.0 1245 0.0746 0.9776 0.9799 0.9787 0.9842
0.0205 16.0 1328 0.0917 0.9738 0.9692 0.9714 0.9789
0.0205 17.0 1411 0.0694 0.9776 0.9799 0.9787 0.9842
0.0205 18.0 1494 0.0697 0.9768 0.9859 0.9812 0.9859
0.0166 19.0 1577 0.0689 0.9702 0.9835 0.9766 0.9824
0.0166 20.0 1660 0.0995 0.9738 0.9692 0.9714 0.9789
0.0166 21.0 1743 0.0847 0.9776 0.9799 0.9787 0.9842
0.0166 22.0 1826 0.0843 0.9776 0.9799 0.9787 0.9842
0.0166 23.0 1909 0.0869 0.9750 0.9727 0.9739 0.9807
0.0166 24.0 1992 0.0762 0.9789 0.9835 0.9811 0.9859
0.0125 25.0 2075 0.0778 0.9789 0.9835 0.9811 0.9859
0.0125 26.0 2158 0.0834 0.9763 0.9763 0.9763 0.9824
0.0125 27.0 2241 0.0818 0.9776 0.9799 0.9787 0.9842
0.0125 28.0 2324 0.0756 0.9684 0.9859 0.9768 0.9824
0.0125 29.0 2407 0.1150 0.9591 0.9824 0.9700 0.9772
0.0125 30.0 2490 0.0781 0.9748 0.9883 0.9813 0.9859
0.0111 31.0 2573 0.0793 0.9716 0.9871 0.9790 0.9842
0.0111 32.0 2656 0.0713 0.9748 0.9883 0.9813 0.9859
0.0111 33.0 2739 0.0802 0.9748 0.9883 0.9813 0.9859
0.0111 34.0 2822 0.0636 0.9802 0.9870 0.9835 0.9877
0.0111 35.0 2905 0.0702 0.9789 0.9835 0.9811 0.9859
0.0111 36.0 2988 0.0773 0.9748 0.9883 0.9813 0.9859
0.0145 37.0 3071 0.0663 0.9781 0.9894 0.9836 0.9877
0.0145 38.0 3154 0.0721 0.9789 0.9835 0.9811 0.9859
0.0145 39.0 3237 0.0708 0.9789 0.9835 0.9811 0.9859
0.0145 40.0 3320 0.0729 0.9748 0.9883 0.9813 0.9859
0.0145 41.0 3403 0.0760 0.9748 0.9883 0.9813 0.9859
0.0145 42.0 3486 0.0771 0.9716 0.9871 0.9790 0.9842
0.0106 43.0 3569 0.0713 0.9748 0.9883 0.9813 0.9859
0.0106 44.0 3652 0.0721 0.9748 0.9883 0.9813 0.9859
0.0106 45.0 3735 0.0732 0.9768 0.9859 0.9812 0.9859
0.0106 46.0 3818 0.0783 0.9789 0.9835 0.9811 0.9859
0.0106 47.0 3901 0.0770 0.9789 0.9835 0.9811 0.9859
0.0106 48.0 3984 0.0744 0.9735 0.9847 0.9789 0.9842
0.0082 49.0 4067 0.0752 0.9722 0.9811 0.9765 0.9824
0.0082 50.0 4150 0.0749 0.9722 0.9811 0.9765 0.9824

Framework versions

  • Transformers 4.22.1
  • Pytorch 1.12.1+cu113
  • Datasets 2.5.1
  • Tokenizers 0.12.1
Downloads last month
10
Safetensors
Model size
87.6M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.