muril-base-cased-finetuned-code-mixed-DS

This model is a fine-tuned version of google/muril-base-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9319
  • Accuracy: 0.6982
  • Precision: 0.6327
  • Recall: 0.6314
  • F1: 0.6320

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 43
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
1.0542 1.98 248 0.9786 0.5976 0.3936 0.5454 0.4330
0.9307 3.97 496 0.8836 0.5996 0.4072 0.5604 0.4399
0.8323 5.95 744 0.8266 0.5996 0.5508 0.5720 0.4527
0.7554 7.94 992 0.8006 0.6318 0.5601 0.5838 0.5232
0.6821 9.92 1240 0.8777 0.6740 0.5929 0.5875 0.5836
0.6173 11.9 1488 0.8389 0.6640 0.5918 0.6031 0.5881
0.5552 13.89 1736 0.9003 0.6962 0.6240 0.6160 0.6191
0.4932 15.87 1984 0.8979 0.6982 0.6266 0.6231 0.6245
0.4446 17.86 2232 0.9104 0.7002 0.6310 0.6290 0.6298
0.4084 19.84 2480 0.9284 0.7002 0.6278 0.6255 0.6264
0.3763 21.82 2728 0.9228 0.7082 0.6436 0.6380 0.6398
0.3575 23.81 2976 0.9319 0.6982 0.6327 0.6314 0.6320

Framework versions

  • Transformers 4.20.1
  • Pytorch 1.10.1+cu111
  • Datasets 2.3.2
  • Tokenizers 0.12.1
Downloads last month
16
Safetensors
Model size
238M params
Tensor type
I64
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.