This model was fine-tuned using a combination of 'uncensored' datasets available on Hugging-Face, as well as the 'Uncensored_mini'.

In my opinion this was a waste of time.

"too toxic." I prefer the LLM to maintain a level of respect when addressing the user without being overly limited or censored.

from huggingface_hub import snapshot_download

# Replace with your Hugging Face token (optional but recommended)
# token = ""

# Replace with the repository ID you want to download
repo_id = "ICEPVP8977/Uncensored_llama_3.2_3b_safetensors"

try:
  snapshot_download(repo_id=repo_id,
                   #  token=token,
                   local_dir="./model")
  print(f"Successfully downloaded {repo_id} to ./model")
except Exception as e:
  print(f"Error downloading repository: {e}")
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer



model = AutoModelForCausalLM.from_pretrained("./model", torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained("./model")
prompt = "Your_question_here"
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
max_new_tokens = 2000  # Set the maximum number of tokens in the response
outputs = model.generate(**inputs, max_new_tokens=max_new_tokens)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)
Downloads last month
193
Safetensors
Model size
3.21B params
Tensor type
FP16
·
Inference Examples
Unable to determine this model's library. Check the docs .

Model tree for ICEPVP8977/Uncensored_llama_3.2_3b_safetensors

Merges
4 models
Quantizations
3 models

Collection including ICEPVP8977/Uncensored_llama_3.2_3b_safetensors