Evaluation on chexpert-plus

Usage:

import torch
from PIL import Image
from transformers import BertTokenizer, ViTImageProcessor, VisionEncoderDecoderModel, GenerationConfig
import requests

mode = "findings"
# Model
model = VisionEncoderDecoderModel.from_pretrained(f"IAMJB/chexpert-mimic-cxr-{mode}-baseline").eval()
tokenizer = BertTokenizer.from_pretrained(f"IAMJB/chexpert-mimic-cxr-{mode}-baseline")
image_processor = ViTImageProcessor.from_pretrained(f"IAMJB/chexpert-mimic-cxr-{mode}-baseline")
#
# Dataset
generation_args = {
   "bos_token_id": model.config.bos_token_id,
   "eos_token_id": model.config.eos_token_id,
   "pad_token_id": model.config.pad_token_id,
   "num_return_sequences": 1,
   "max_length": 128,
   "use_cache": True,
   "beam_width": 2,
}
#
# Inference
refs = []
hyps = []
with torch.no_grad():
   url = "https://huggingface.co./IAMJB/interpret-cxr-impression-baseline/resolve/main/effusions-bibasal.jpg"
   image = Image.open(requests.get(url, stream=True).raw)
   pixel_values = image_processor(image, return_tensors="pt").pixel_values
   # Generate predictions
   generated_ids = model.generate(
       pixel_values,
       generation_config=GenerationConfig(
           **{**generation_args, "decoder_start_token_id": tokenizer.cls_token_id})
   )
   generated_texts = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
   print(generated_texts)
Downloads last month
405
Safetensors
Model size
61.3M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Collection including IAMJB/chexpert-mimic-cxr-findings-baseline