custom-mxm / README.md
Huhujingjing's picture
Update README.md
f4de30a
metadata
license: mit
datasets:
  - lisn519010/QM9
language:
  - en
  - zh
metrics:
  - mae
  - accuracy
  - r_squared
  - mse
pipeline_tag: graph-ml
pip install transformers gradio rdkit torch

pip install torch_scatter torch_sparse torch_geometric
import gradio as gr
from transformers import AutoModel

def predict_smiles(name):
    device = 'cpu'
    smiles = name
    assert isinstance(smiles, str), 'smiles must be str'

    smiles = smiles.strip()
    if ';' in smiles:
        smiles = smiles.split(";")
    elif ' ' in smiles:
        smiles = smiles.split(" ")
    elif ',' in smiles:
        smiles = smiles.split(",")
    else:
        smiles = [smiles]


    model = AutoModel.from_pretrained("Huhujingjing/custom-mxm", trust_remote_code=True).to(device)

    output, df = model.predict_smiles(smiles)

    return output, df

iface = gr.Interface(fn=predict_smiles, inputs="text", outputs=["text", "dataframe"])
iface.launch(share=True)