Adding carbon footprint information

#20
by sasha HF staff - opened
Files changed (1) hide show
  1. README.md +44 -3
README.md CHANGED
@@ -306,9 +306,9 @@ Similarly to the base IDEFICS models, we performed checkpoint selection to stop
306
 
307
  ## Hardware
308
 
309
- The IDEFICS models were trained on an AWS SageMaker cluster with 8x80GB A100 GPUs nodes and EFA network.
310
 
311
- - IDEFICS-80B took ~28 days of training on 64 nodes (512 GPUs).
312
  - IDEFICS-80b-instruct finetuned the base model for ~3 days on 48 nodes (384 GPUs).
313
 
314
 
@@ -317,6 +317,47 @@ The IDEFICS models were trained on an AWS SageMaker cluster with 8x80GB A100 GPU
317
  The training software is built on top of HuggingFace Transformers + Accelerate, and [DeepSpeed ZeRO-3](https://github.com/microsoft/DeepSpeed) for training, and [WebDataset](https://github.com/webdataset/webdataset) for data loading.
318
 
319
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
320
  # Bias, Risks, and Limitations
321
 
322
  Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)).
@@ -439,4 +480,4 @@ Stas Bekman*, Léo Tronchon*, Hugo Laurençon*, Lucile Saulnier*, Amanpreet Sing
439
 
440
  # Model Card Contact
441
 
442
- Please open a discussion on the Community tab!
 
306
 
307
  ## Hardware
308
 
309
+ The IDEFICS models were trained on an AWS SageMaker cluster with 8x80GB A100 GPUs nodes and EFA network.
310
 
311
+ - IDEFICS-80B took ~28 days of training on 64 nodes (512 GPUs).
312
  - IDEFICS-80b-instruct finetuned the base model for ~3 days on 48 nodes (384 GPUs).
313
 
314
 
 
317
  The training software is built on top of HuggingFace Transformers + Accelerate, and [DeepSpeed ZeRO-3](https://github.com/microsoft/DeepSpeed) for training, and [WebDataset](https://github.com/webdataset/webdataset) for data loading.
318
 
319
 
320
+ ## Environmental Impact
321
+
322
+ We distinguish the 3 phases of the creation of IDEFICS and report our carbon emissions separately for each one of them:
323
+
324
+ *Preliminary experimentation*
325
+ - **Hardware Type:** Intel Cascade Lake CPUs, NVIDIA V100 and A100 GPUs
326
+ - **Hours used:** 460,000 CPU hours, 385,000 V100 GPU hours, and 300,000 A100 GPU hours
327
+ - **Cloud Provider:** N/A (Jean Zay cluster)
328
+ - **Compute Region:** France (57g CO2eq/kWh)
329
+ - **Carbon Emitted:** 16,714 kgs of CO2eq
330
+
331
+ *IDEFICS-9b pretraining*
332
+ - **Hardware Type:** 128 NVIDIA A100 GPUs
333
+ - **Hours used:** 350 hours
334
+ - **Cloud Provider:** AWS
335
+ - **Compute Region:** US-West 2 (288g CO2eq/kWh)
336
+ - **Carbon Emitted:** 5,160 kg of CO2eq
337
+
338
+ *IDEFICS-9b-instruct finetuning*
339
+ - **Hardware Type:** 128 NVIDIA A100 GPUs
340
+ - **Hours used:** 70 hours
341
+ - **Cloud Provider:** AWS
342
+ - **Compute Region:** US-West 2 (288g CO2eq/kWh)
343
+ - **Carbon Emitted:** 1,032 kg of CO2eq
344
+
345
+ *IDEFICS-80b pretraining*
346
+ - **Hardware Type:** 512 NVIDIA A100 GPUs
347
+ - **Hours used:** 672 hours (28 days)
348
+ - **Cloud Provider:** AWS
349
+ - **Compute Region:** US-West 2 (288g CO2eq/kWh)
350
+ - **Carbon Emitted:** 39,498 kg of CO2eq
351
+
352
+ *IDEFICS-80b-instruct finetuning*
353
+ - **Hardware Type:** 384 NVIDIA A100 GPUs
354
+ - **Hours used:** 72 hours (3 days)
355
+ - **Cloud Provider:** AWS
356
+ - **Compute Region:** US-West 2 (288g CO2eq/kWh)
357
+ - **Carbon Emitted:** 3,174 kg of CO2eq
358
+
359
+ This means that the total carbon footprint of the entire IDEFICS project can be estimated at **65.57 tons of CO2eq**, which is roughly equal to 168,092 miles driven by an average gasoline-powered car or 8.3 homes' energy use for one year, according to the [US Environmental Protection Agency](https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator).
360
+
361
  # Bias, Risks, and Limitations
362
 
363
  Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)).
 
480
 
481
  # Model Card Contact
482
 
483
+ Please open a discussion on the Community tab!