emotion_classification_fr

This model is a fine-tuned version of FacebookAI/xlm-roberta-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5239
  • Accuracy: 0.815
  • Precision: 0.8165
  • Recall: 0.815
  • F1-score: 0.8152

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1-score
0.6944 1.0 1000 0.6852 0.76 0.7601 0.76 0.7584
0.7167 2.0 2000 0.5862 0.798 0.8032 0.798 0.7994
0.5138 3.0 3000 0.5239 0.815 0.8165 0.815 0.8152

Framework versions

  • PEFT 0.13.0
  • Transformers 4.44.0
  • Pytorch 2.4.0+cu121
  • Datasets 3.0.1
  • Tokenizers 0.19.1
Downloads last month
7
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for HikariLight/emotion_classification_fr

Adapter
(22)
this model