Edit model card

ControlLoRA Version 3 Pretrained Models Collection

This is a collections of control-lora-v3 weights trained on runwayml/stable-diffusion-v1-5 and stabilityai/stable-diffusion-xl-base-1.0 with different types of conditioning. You can find some example images below.

Stable Diffusion

Canny

OpenPose + Segmentation

This is experimental, and it doesn't work well.

Depth

Normal map

OpenPose

Segmentation

Tile

Stable Diffusion XL

Canny

Intended uses & limitations

How to use

First clone the control-lora-v3 and cd in the directory:

git clone https://github.com/HighCWu/control-lora-v3
cd control-lora-v3

Then run the python code。

For stable diffusion, use:

# !pip install opencv-python transformers accelerate
from diffusers import UniPCMultistepScheduler
from diffusers.utils import load_image
from model import UNet2DConditionModelEx
from pipeline import StableDiffusionControlLoraV3Pipeline
import numpy as np
import torch

import cv2
from PIL import Image

# download an image
image = load_image(
    "https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png"
)
image = np.array(image)

# get canny image
image = cv2.Canny(image, 100, 200)
image = image[:, :, None]
image = np.concatenate([image, image, image], axis=2)
canny_image = Image.fromarray(image)

# load stable diffusion v1-5 and control-lora-v3 
unet: UNet2DConditionModelEx = UNet2DConditionModelEx.from_pretrained(
    "runwayml/stable-diffusion-v1-5", subfolder="unet", torch_dtype=torch.float16
)
unet = unet.add_extra_conditions(["canny"])
pipe = StableDiffusionControlLoraV3Pipeline.from_pretrained(
    "runwayml/stable-diffusion-v1-5", unet=unet, torch_dtype=torch.float16
)
# load attention processors
# pipe.load_lora_weights("HighCWu/sd-control-lora-v3-canny")
pipe.load_lora_weights("HighCWu/control-lora-v3", subfolder="sd-control-lora-v3-canny-half_skip_attn-rank16-conv_in-rank64")

# speed up diffusion process with faster scheduler and memory optimization
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
# remove following line if xformers is not installed
pipe.enable_xformers_memory_efficient_attention()

pipe.enable_model_cpu_offload()

# generate image
generator = torch.manual_seed(0)
image = pipe(
    "futuristic-looking woman", num_inference_steps=20, generator=generator, image=canny_image
).images[0]
image.show()

For stable diffusion xl, use:

# !pip install opencv-python transformers accelerate
from diffusers import AutoencoderKL
from diffusers.utils import load_image
from model import UNet2DConditionModelEx
from pipeline_sdxl import StableDiffusionXLControlLoraV3Pipeline
import numpy as np
import torch

import cv2
from PIL import Image

prompt = "aerial view, a futuristic research complex in a bright foggy jungle, hard lighting"
negative_prompt = "low quality, bad quality, sketches"

# download an image
image = load_image(
    "https://hf.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/hf-logo.png"
)

# initialize the models and pipeline
unet: UNet2DConditionModelEx = UNet2DConditionModelEx.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0", subfolder="unet", torch_dtype=torch.float16
)
unet = unet.add_extra_conditions(["canny"])
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
pipe = StableDiffusionXLControlLoraV3Pipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0", unet=unet, vae=vae, torch_dtype=torch.float16
)
# load attention processors
# pipe.load_lora_weights("HighCWu/sdxl-control-lora-v3-canny")
pipe.load_lora_weights("HighCWu/control-lora-v3", subfolder="sdxl-control-lora-v3-canny-half_skip_attn-rank16-conv_in-rank64")
pipe.enable_model_cpu_offload()

# get canny image
image = np.array(image)
image = cv2.Canny(image, 100, 200)
image = image[:, :, None]
image = np.concatenate([image, image, image], axis=2)
canny_image = Image.fromarray(image)

# generate image
image = pipe(
    prompt, image=canny_image
).images[0]
image.show()

Limitations and bias

[TODO: provide examples of latent issues and potential remediations]

Training details

[TODO: describe the data used to train the model]

Downloads last month
0
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for HighCWu/control-lora-v3

Adapter
(2305)
this model

Space using HighCWu/control-lora-v3 1