finetune-instance-segmentation-ade20k-mini-mask2former_3

This model is a fine-tuned version of facebook/mask2former-swin-tiny-coco-instance on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 21.8296
  • Map: 0.6941
  • Map 50: 0.8672
  • Map 75: 0.7324
  • Map Small: 0.1837
  • Map Medium: 0.533
  • Map Large: 0.8476
  • Mar 1: 0.5536
  • Mar 10: 0.7509
  • Mar 100: 0.7971
  • Mar Small: 0.4162
  • Mar Medium: 0.7363
  • Mar Large: 0.9159
  • Map Background: 0.9263
  • Mar 100 Background: 0.9435
  • Map Building: 0.462
  • Mar 100 Building: 0.6506

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 64
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: constant
  • num_epochs: 30.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Map Map 50 Map 75 Map Small Map Medium Map Large Mar 1 Mar 10 Mar 100 Mar Small Mar Medium Mar Large Map Background Mar 100 Background Map Building Mar 100 Building
113.7971 1.0 18 54.5754 0.0104 0.0275 0.0056 0.0007 0.0092 0.0318 0.0158 0.1576 0.3476 0.0456 0.1433 0.3825 0.0169 0.5786 0.004 0.1165
46.1207 2.0 36 41.7255 0.1211 0.2383 0.1079 0.0297 0.1815 0.3339 0.1421 0.4984 0.6046 0.2304 0.5813 0.7349 0.088 0.7217 0.1542 0.4874
37.5319 3.0 54 35.0953 0.3438 0.5097 0.3674 0.0693 0.3147 0.5321 0.4204 0.6597 0.7112 0.2853 0.62 0.8425 0.4114 0.8886 0.2762 0.5339
32.2408 4.0 72 31.1007 0.4725 0.6521 0.5066 0.0955 0.3797 0.6318 0.5057 0.6913 0.7412 0.3187 0.6466 0.8723 0.6119 0.9191 0.3331 0.5634
29.0339 5.0 90 28.8429 0.5993 0.7915 0.6487 0.1077 0.4116 0.7603 0.5213 0.7062 0.7536 0.3345 0.6634 0.8849 0.8423 0.9273 0.3563 0.5798
27.0289 6.0 108 27.2669 0.6292 0.8239 0.6783 0.1232 0.4349 0.7877 0.5305 0.7117 0.7585 0.3505 0.6724 0.889 0.883 0.9253 0.3753 0.5916
25.7301 7.0 126 26.2551 0.6392 0.8322 0.6873 0.1325 0.4502 0.7974 0.532 0.7143 0.7647 0.3629 0.69 0.8908 0.8905 0.9248 0.3879 0.6047
24.7686 8.0 144 25.5236 0.6473 0.8391 0.6943 0.1394 0.4632 0.8027 0.5368 0.718 0.7679 0.3667 0.6967 0.8943 0.8956 0.9257 0.399 0.6102
24.1245 9.0 162 24.9991 0.6529 0.8439 0.6976 0.1428 0.4749 0.8062 0.539 0.7193 0.7697 0.3736 0.7027 0.895 0.8974 0.9234 0.4084 0.6161
23.5334 10.0 180 24.7225 0.6582 0.8458 0.7004 0.1506 0.4812 0.8093 0.5416 0.724 0.7744 0.3799 0.7082 0.8968 0.9016 0.9282 0.4149 0.6206
23.0677 11.0 198 24.3978 0.6632 0.849 0.7049 0.1521 0.4852 0.8161 0.5432 0.7258 0.7761 0.3796 0.7115 0.9006 0.9071 0.9289 0.4193 0.6233
22.597 12.0 216 24.0400 0.6675 0.8523 0.707 0.157 0.4926 0.8196 0.5438 0.7295 0.7784 0.3842 0.7136 0.9032 0.9094 0.9301 0.4255 0.6267
22.2306 13.0 234 23.8523 0.6705 0.8544 0.7078 0.1584 0.4932 0.822 0.5466 0.7306 0.7817 0.3844 0.7202 0.9055 0.9134 0.9335 0.4276 0.6299
21.8893 14.0 252 23.6264 0.6735 0.8559 0.7123 0.1607 0.5 0.8253 0.548 0.7344 0.7829 0.3922 0.7166 0.9055 0.9144 0.9349 0.4327 0.6308
21.6071 15.0 270 23.4112 0.676 0.8575 0.7141 0.1625 0.5027 0.8278 0.5492 0.7355 0.7836 0.3919 0.7178 0.9063 0.9167 0.9358 0.4353 0.6314
21.2754 16.0 288 23.1654 0.6782 0.8573 0.7177 0.1649 0.5109 0.8295 0.5478 0.7382 0.7869 0.3969 0.7282 0.9077 0.9166 0.9353 0.4398 0.6385
21.0393 17.0 306 23.0104 0.6796 0.8592 0.7186 0.1682 0.5086 0.8329 0.5484 0.7395 0.7868 0.396 0.7247 0.9095 0.9184 0.9365 0.4408 0.6371
20.8053 18.0 324 22.8456 0.683 0.8598 0.7218 0.1705 0.5171 0.8342 0.5503 0.7417 0.7895 0.4014 0.7308 0.9109 0.9195 0.9369 0.4465 0.6422
20.5247 19.0 342 22.7148 0.6829 0.8614 0.7207 0.1696 0.5175 0.8339 0.5499 0.7417 0.7895 0.4034 0.729 0.9102 0.9201 0.9373 0.4457 0.6417
20.4118 20.0 360 22.5014 0.6844 0.8605 0.7211 0.1705 0.5185 0.8375 0.5516 0.7432 0.7909 0.4025 0.7317 0.9109 0.9212 0.9394 0.4476 0.6425
20.1455 21.0 378 22.4692 0.6863 0.864 0.7234 0.1715 0.5212 0.8375 0.5513 0.7445 0.7924 0.4055 0.7332 0.9116 0.9226 0.9406 0.4501 0.6443
19.904 22.0 396 22.4235 0.6877 0.8654 0.7244 0.1737 0.5248 0.8411 0.5526 0.7432 0.792 0.4058 0.7314 0.9133 0.9227 0.9396 0.4526 0.6445
19.6888 23.0 414 22.3299 0.6902 0.8652 0.7264 0.1769 0.5283 0.8421 0.5531 0.7446 0.7929 0.409 0.7326 0.9143 0.924 0.9392 0.4563 0.6466
19.4733 24.0 432 22.2339 0.69 0.8649 0.7267 0.1763 0.5277 0.8426 0.5527 0.7463 0.7937 0.4107 0.7318 0.9142 0.9243 0.9408 0.4558 0.6465
19.3223 25.0 450 22.1182 0.6902 0.8656 0.7275 0.1793 0.5286 0.843 0.5525 0.7469 0.7939 0.4105 0.7342 0.9159 0.9234 0.9394 0.457 0.6484
19.1744 26.0 468 22.0561 0.6915 0.8678 0.7304 0.1798 0.5284 0.8448 0.5524 0.7457 0.7936 0.4125 0.7326 0.9133 0.9238 0.9398 0.4592 0.6474
19.002 27.0 486 22.0421 0.6932 0.8676 0.7294 0.1811 0.5334 0.8447 0.5522 0.7485 0.7966 0.4156 0.7399 0.9151 0.9251 0.941 0.4612 0.6522
18.8741 28.0 504 21.9818 0.6939 0.8683 0.7334 0.1836 0.5328 0.847 0.553 0.7494 0.7968 0.4165 0.7361 0.9173 0.9263 0.9421 0.4615 0.6514
19.2285 28.3429 510 21.8296 0.6941 0.8672 0.7324 0.1837 0.533 0.8476 0.5536 0.7509 0.7971 0.4162 0.7363 0.9159 0.9263 0.9435 0.462 0.6506

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
5
Safetensors
Model size
47.4M params
Tensor type
I64
·
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for Golder/finetune-instance-segmentation-ade20k-mini-mask2former_3

Finetuned
(3)
this model