Pegasus_xsum_samsum

This model is a fine-tuned version of google/pegasus-xsum on the samsum dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4709
  • Rouge1: 0.5072
  • Rouge2: 0.2631
  • Rougel: 0.4243
  • Rougelsum: 0.4244
  • Gen Len: 19.1479
  • Precision: 0.9247
  • Recall: 0.9099
  • F1: 0.917

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len Precision Recall F1
1.9542 1.0 920 1.5350 0.4928 0.2436 0.4085 0.4086 18.5672 0.9229 0.9074 0.9149
1.6331 2.0 1841 1.4914 0.5037 0.257 0.4202 0.4206 18.8154 0.9246 0.9092 0.9166
1.5694 3.0 2762 1.4761 0.5071 0.259 0.4212 0.4214 19.4487 0.9241 0.9103 0.917
1.5374 4.0 3680 1.4709 0.5072 0.2631 0.4243 0.4244 19.1479 0.9247 0.9099 0.917

Framework versions

  • Transformers 4.36.0
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.5
  • Tokenizers 0.15.0
Downloads last month
26
Safetensors
Model size
570M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for GlycerinLOL/Pegasus_xsum_samsum

Finetuned
(29)
this model

Dataset used to train GlycerinLOL/Pegasus_xsum_samsum

Evaluation results