StrangeMerges_30-7B-slerp
Given the benchmark score distribution this model might jump several spots if trained on something like orca-math or thruthy datasets. Anyone got a good walkthrough vid with about how long training takes/colab costs, etc?
StrangeMerges_30-7B-slerp is a merge of the following models using LazyMergekit:
𧩠Configuration
slices:
- sources:
- model: Gille/StrangeMerges_21-7B-slerp
layer_range: [0, 32]
- model: yam-peleg/Experiment26-7B
layer_range: [0, 32]
merge_method: slerp
base_model: Gille/StrangeMerges_21-7B-slerp
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
π» Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Gille/StrangeMerges_30-7B-slerp"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
- Downloads last month
- 83
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for Gille/StrangeMerges_30-7B-slerp
Merge model
this model