NuExtract-tiny-v1.5 by NuMind 🔥 OpenVINO

NuExtract-tiny-v1.5 is a fine-tuning of Qwen/Qwen2.5-0.5B, trained on a private high-quality dataset for structured information extraction. It supports long documents and several languages (English, French, Spanish, German, Portuguese, and Italian). To use the model, provide an input text and a JSON template describing the information you need to extract.

Note: This model is trained to prioritize pure extraction, so in most cases all text generated by the model is present as is in the original text.

We also provide a 3.8B version which is based on Phi-3.5-mini-instruct: NuExtract-v1.5

Check out the blog post.

Try the 3.8B model here: Playground

⚠️ We recommend using NuExtract with a temperature at or very close to 0. Some inference frameworks, such as Ollama, use a default of 0.7 which is not well suited to pure extraction tasks.

This is the OpenVINO IR format of the model, quantized in int8

The model was created with the Optimum-Intel libray cli-command

Dependencies required to create the model

There is an open clash in dependencies versions between optiumum-intel and openvino-genai

⚠️ Exporting tokenizers to OpenVINO is not supported for tokenizers version > 0.19 and openvino version <= 2024.4. Please downgrade to tokenizers version <= 0.19 to export tokenizers to OpenVINO.

So for the model conversion the only dependency you need is

pip install  -U "openvino>=2024.3.0" "openvino-genai"
pip install "torch>=2.1" "nncf>=2.7" "transformers>=4.40.0" "onnx<1.16.2" "optimum>=1.16.1" "accelerate" "datasets>=2.14.6" "git+https://github.com/huggingface/optimum-intel.git" --extra-index-url https://download.pytorch.org/whl/cpu

The instructions are from the amazing OpenVINO notebooks
vanilla pip install will create clashes among dependencies/versions
This command will install, among others:

tokenizers==0.20.3
torch==2.5.1+cpu
transformers==4.46.3
nncf==2.14.0
numpy==2.1.3
onnx==1.16.1
openvino==2024.5.0
openvino-genai==2024.5.0.0
openvino-telemetry==2024.5.0
openvino-tokenizers==2024.5.0.0
optimum==1.23.3
optimum-intel @ git+https://github.com/huggingface/optimum-intel.git@c454b0000279ac9801302d726fbbbc1152733315

How to quantized the original model

After the previous step you are enabled to run the following command (considering that you downloaded all the model weights and files into a subfolder called NuExtract-1.5-tiny from the official model repository)

optimum-cli export openvino --model NuExtract-1.5-tiny --task text-generation-with-past --trust-remote-code --weight-format int8 ov_NuExtract-1.5-tiny

this will start the process and produce the following messages, without any fatal error

Dependencies required to run the model with openvino-genai

If you simply need to run already converted models into OpenVINO IR format, you need to install only openvino-genai

pip install openvino-genai==2024.5.0

How to use the model with openvino-genai

considering you also have python-rich installed (that is coming together with optimum-intel... otherwise pip install rich)

"""
followed official tutorial
https://docs.openvino.ai/2024/notebooks/llm-question-answering-with-output.html
"""
# MAIN IMPORTS
import warnings
warnings.filterwarnings(action='ignore')
import datetime
from rich.console import Console
from rich.panel import Panel
import openvino_genai as ov_genai
# SETTING CONSOLE WIDTH
console = Console(width=80)
# LOADING THE MODEL
console.print('Loading the model...', end='')
model_dir = 'ov_NuExtract-1.5-tiny'
pipe = ov_genai.LLMPipeline(model_dir, 'CPU')
console.print('✅  done')
console.print('Ready for generation')
# PROMPT FORMATTING
jsontemplate = """{
    "Model": {
        "Name": "",
        "Number of parameters": "",
        "Number of max token": "",
        "Architecture": []
    },
    "Usage": {
        "Use case": [],
        "Licence": ""
    }
}"""
text = """We introduce Mistral 7B, a 7–billion-parameter language model engineered for
superior performance and efficiency. Mistral 7B outperforms the best open 13B
model (Llama 2) across all evaluated benchmarks, and the best released 34B
model (Llama 1) in reasoning, mathematics, and code generation. Our model
leverages grouped-query attention (GQA) for faster inference, coupled with sliding
window attention (SWA) to effectively handle sequences of arbitrary length with a
reduced inference cost. We also provide a model fine-tuned to follow instructions,
Mistral 7B – Instruct, that surpasses Llama 2 13B – chat model both on human and
automated benchmarks. Our models are released under the Apache 2.0 license.
Code: <https://github.com/mistralai/mistral-src>
Webpage: <https://mistral.ai/news/announcing-mistral-7b/>"""

prompt = f"""<|input|>\n### Template:
{jsontemplate}

### Text:
{text}
<|output|>
"""
# START PIPELINE setting eos_token_id = 151643
start = datetime.datetime.now()
with console.status("Generating json reply", spinner='dots8',):
    output = pipe.generate(prompt, temperature=0.2, 
                        do_sample=True, 
                        max_new_tokens=500, 
                        repetition_penalty=1.178,
                        eos_token_id = 151643)
delta = datetime.datetime.now() - start
# PRINT THE OUTPUT
console.print(output)
console.rule()
console.print(f'Generated in {delta}')

An awesome Streamlit+OpenVINO interface

you can find the code in my official GitHub repository Mentioned in Awesome OpenVINO You can clone the repo and use the downloaded files from this Hugging Face Model
Running the streamlit app will give this:


Benchmark

Zero-shot performance (English):

Few-shot fine-tuning:


Usage (copied from original model)

To use the model:

import json
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

def predict_NuExtract(model, tokenizer, texts, template, batch_size=1, max_length=10_000, max_new_tokens=4_000):
    template = json.dumps(json.loads(template), indent=4)
    prompts = [f"""<|input|>\n### Template:\n{template}\n### Text:\n{text}\n\n<|output|>""" for text in texts]
    
    outputs = []
    with torch.no_grad():
        for i in range(0, len(prompts), batch_size):
            batch_prompts = prompts[i:i+batch_size]
            batch_encodings = tokenizer(batch_prompts, return_tensors="pt", truncation=True, padding=True, max_length=max_length).to(model.device)

            pred_ids = model.generate(**batch_encodings, max_new_tokens=max_new_tokens)
            outputs += tokenizer.batch_decode(pred_ids, skip_special_tokens=True)

    return [output.split("<|output|>")[1] for output in outputs]

model_name = "numind/NuExtract-tiny-v1.5"
device = "cuda"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, trust_remote_code=True).to(device).eval()
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)

text = """We introduce Mistral 7B, a 7–billion-parameter language model engineered for
superior performance and efficiency. Mistral 7B outperforms the best open 13B
model (Llama 2) across all evaluated benchmarks, and the best released 34B
model (Llama 1) in reasoning, mathematics, and code generation. Our model
leverages grouped-query attention (GQA) for faster inference, coupled with sliding
window attention (SWA) to effectively handle sequences of arbitrary length with a
reduced inference cost. We also provide a model fine-tuned to follow instructions,
Mistral 7B – Instruct, that surpasses Llama 2 13B – chat model both on human and
automated benchmarks. Our models are released under the Apache 2.0 license.
Code: <https://github.com/mistralai/mistral-src>
Webpage: <https://mistral.ai/news/announcing-mistral-7b/>"""

template = """{
    "Model": {
        "Name": "",
        "Number of parameters": "",
        "Number of max token": "",
        "Architecture": []
    },
    "Usage": {
        "Use case": [],
        "Licence": ""
    }
}"""

prediction = predict_NuExtract(model, tokenizer, [text], template)[0]
print(prediction)

Sliding window prompting:

import json

MAX_INPUT_SIZE = 20_000
MAX_NEW_TOKENS = 6000

def clean_json_text(text):
    text = text.strip()
    text = text.replace("\#", "#").replace("\&", "&")
    return text

def predict_chunk(text, template, current, model, tokenizer):
    current = clean_json_text(current)

    input_llm =  f"<|input|>\n### Template:\n{template}\n### Current:\n{current}\n### Text:\n{text}\n\n<|output|>" + "{"
    input_ids = tokenizer(input_llm, return_tensors="pt", truncation=True, max_length=MAX_INPUT_SIZE).to("cuda")
    output = tokenizer.decode(model.generate(**input_ids, max_new_tokens=MAX_NEW_TOKENS)[0], skip_special_tokens=True)

    return clean_json_text(output.split("<|output|>")[1])

def split_document(document, window_size, overlap):
    tokens = tokenizer.tokenize(document)
    print(f"\tLength of document: {len(tokens)} tokens")

    chunks = []
    if len(tokens) > window_size:
        for i in range(0, len(tokens), window_size-overlap):
            print(f"\t{i} to {i + len(tokens[i:i + window_size])}")
            chunk = tokenizer.convert_tokens_to_string(tokens[i:i + window_size])
            chunks.append(chunk)

            if i + len(tokens[i:i + window_size]) >= len(tokens):
                break
    else:
        chunks.append(document)
    print(f"\tSplit into {len(chunks)} chunks")

    return chunks

def handle_broken_output(pred, prev):
    try:
        if all([(v in ["", []]) for v in json.loads(pred).values()]):
            # if empty json, return previous
            pred = prev
    except:
        # if broken json, return previous
        pred = prev

    return pred

def sliding_window_prediction(text, template, model, tokenizer, window_size=4000, overlap=128):
    # split text into chunks of n tokens
    tokens = tokenizer.tokenize(text)
    chunks = split_document(text, window_size, overlap)

    # iterate over text chunks
    prev = template
    for i, chunk in enumerate(chunks):
        print(f"Processing chunk {i}...")
        pred = predict_chunk(chunk, template, prev, model, tokenizer)

        # handle broken output
        pred = handle_broken_output(pred, prev)
            
        # iterate
        prev = pred

    return pred
Downloads last month
19
Inference Examples
Inference API (serverless) does not yet support OpenVINO models for this pipeline type.

Model tree for FM-1976/ov_NuExtract-1.5-tiny

Base model

Qwen/Qwen2.5-0.5B
Finetuned
(4)
this model